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Fig. S1: SS15 suppresses cell death mediated by SlNRC1, NRC2 and NRC3 but not NRC4 
or NbZAR1. (A) Photo of representative leaves from N. benthamiana nrc2/3/4 KO plants showing 
HR after co-expression of various autoactive NLR variants with a free mCherry-6xHA fusion 
protein (EV) or with N-terminally 4xHA-tagged SS15. Images are representative of (B) SDS-
PAGE accompanying BN-PAGE shown in Fig. 1B. Total protein extracts were immunoblotted 
with the appropriate antisera labelled on the left. Approximate molecular weights (kDa) of the 
proteins are shown on the right. Rubisco loading control was carried out using Ponceau stain (PS). 
The experiment was repeated three times with similar results. 





Fig. S2: SS15 inhibits plasma membrane-association of activated NRC2. (A-D) C-terminally 
GFP-tagged NRC2EEE and C-terminally RFP-tagged Rx were co-expressed with an EV-4xMyc 
construct or a CP-4xMyc construct in leaves of nrc2/3/4 KO N. benthamiana. Representative 
single-plane confocal micrographs show the localization of both components of the inactive and 
active Rx-NRC2 system. Scale bars represent 10 µm. (A) NRC2EEE-GFP and Rx-RFP co-localize 
in the cytoplasm. (B) As reported previously, Rx/CP activated NRC2EEE forms plasma membrane-
associated puncta while Rx remains in the cytoplasm. (C) Co-expression with SS15 does not alter 
the localization of inactive NRC2EEE-GFP or Rx-RFP. (D) Upon co-expression CP-4xMyc, Rx-
RFP and NRC2EEE-GFP with SS15, the punctate localization for NRC2EEE-GFP is no longer 
observed. (E) Membrane enrichment assays are consistent with microscopy. As reported 
previously, inactive NRC2EEE-GFP is mostly present in the soluble fraction (S) whereas activated 
NRC2EEE-GFP exhibits equal distribution across soluble and membrane (M) fractions. Upon co-
expression with SS15, NRC2EEE-GFP distribution remains in the soluble fraction regardless of the 
presence or absence of PVX CP. The experiment was repeated twice with similar results. 





Fig. S3: SS15 inhibits NRC2 by interacting with the HD1-1 region of the NB-ARC domain. 
(A) Schematic representation of all NRC2-NRC4 chimeric proteins generated. Association with
SS15 (+) or lack thereof (-) is indicated on the right. (B) Co-Immunoprecipitation (Co-IP) assays
between SS15 and chimeric NRC2-NRC4 variants. C-terminally 4xMyc-tagged NRC proteins
were transiently co-expressed with N-terminally 4xHA-tagged SS15. IPs were performed with
agarose beads conjugated to Myc antibodies (Myc IP). Total protein extracts were immunoblotted
with the appropriate antisera labelled on the left. Approximate molecular weights (kDa) of the
proteins are shown on the right. Rubisco loading control was carried out using Ponceau stain (PS).
The experiment was repeated three times with similar results. (C) SDS-PAGE accompanying BN-
PAGE shown in Fig. 2E. Total protein extracts were immunoblotted with the appropriate antisera
labelled on the left. Approximate molecular weights (kDa) of the proteins are shown on the right.
Rubisco loading control was carried out using Ponceau stain (PS). The experiment was repeated
three times with similar results.



Fig. S4: NRC4HD1-1 chimera is susceptible to inhibition by SS15. HR scores accompanying Fig. 
2D. In all cases, Rx/CP was used to activate the system. HR was scored based on a modified 0–7 
scale (49) between 5–7 days post-infiltration. HR scores are presented as dot plots, where the size 
of each dot is proportional to the number of samples with the same score (Count). Results are 
based on 3 biological replicates. Statistical tests were implemented using the besthr R library (50). 
We performed bootstrap resampling tests using a lower significance cut-off of 0.025 and an upper 
cut-off of 0.975. Mean ranks of test samples falling outside of these cut-offs in the control samples 
bootstrap population were considered significant. Significant differences between the conditions 
are indicated with an asterisk (*). 





Fig. S5: Crystal structure of SS15 in complex with SlNRC1NB-ARC. Electron density map 
showing the relative orientation and arrangement of SS15 (orange) and SlNRC1NB-ARC (violet) 
within an asymmetric unit. 2Fo-Fc map countered at 1𝜎 (B) Two possible interfaces between SS15 
and SlNRC1NB-ARC revealed from the crystal packing. Both interfaces (Interface 1 and Interface 2) 
are outlined (Left). Modelling of both potential binding interfaces for SS15 complex with full 
length SlNRC1 (magenta) reveals a steric clash between the CC-domain of SlNRC1 and SS15, 
making interface 2 unlikely to be biologically relevant in the full-length context (Right). (C) Close 
up view of interaction between SS15-SlNRC1NB-ARC interaction interface relative to the ATP-
binding site within the NB-ARC domain of SlNRC1. The pyrophosphate moiety of ADP is 
oriented facing opposite the SS15 binding interface (shown as ball and sticks), suggesting that 
SS15 is unlikely to displace bound nucleotide or prevent ATP hydrolysis. (D) Structure of SS15-
SlNRC1NB-ARC (yellow, PDB 8BV0) is superimposed over the NB-ARC domain of AtZAR1 in its 
inactive (green, PDB 6J5W), intermediate (cyan, PDB 6J5V), and active resistosome (magenta, 
6J5T) conformations. Visualizing these three states reveals the trajectory of the NB domain as it 
moves relative to the HD1 and WHD domains while changing from inactive to activated states. 
The binding of SS15 at the critical hinge region between the NB and HD1-WHD domains likely 
immobilizes this loop, preventing these critical intramolecular rearrangements and therefore 
preventing NLR activation. See Movie S1. 





Fig. S6: Out of 13 NRC2 variants tested, only E316P and D317K mutations abolish SS15 
association and HR suppression. (A) Photo of representative leaves from N. benthamiana 
nrc2/3/4 KO plants showing HR after co-expression of Rx and PVX CP with NRC2, or the 
different NRC2 variants generated. These effector-sensor-helper combinations were co-expressed 
with a free mCherry-6xHA fusion protein (EV) or with N-terminally 4xHA-tagged SS15. (B) Co-
Immunoprecipitation (Co-IP) assays between SS15 and NRC2 variants. C-terminally 4xMyc-
tagged NRC2 variants were transiently co-expressed with N-terminally 4xHA-tagged SS15. IPs 
were performed with agarose beads conjugated to Myc antibodies (Myc IP). Total protein extracts 
were immunoblotted with appropriate antisera labelled on the left. Approximate molecular weights 
(kDa) of the proteins are shown on the right. Rubisco loading control was carried out using 
Ponceau stain (PS). The experiment was repeated three times with similar results. 



Fig. S7: NRC2E316P and NRC2D317K abolish SS15-mediated suppression of Rx. 
HR scores accompanying Fig. 3C. In all cases, Rx/CP was used to activate the system. HR was 
scored based on a modified 0–7 scale (49) between 5–7 days post-infiltration. HR scores are 
presented as dot plots, where the size of each dot is proportional to the number of samples with 
the same score (Count). Results are based on 3 biological replicates. Statistical tests were 
implemented using the besthr R library (50). We performed bootstrap resampling tests using a 
lower significance cut-off of 0.025 and an upper cut-off of 0.975. Mean ranks of test samples 
falling outside of these cut-offs in the control samples bootstrap population were considered 
significant. Significant differences between the conditions are indicated with an asterisk (*). 





Fig. S8: NRC2D317K abolishes SS15-mediated suppression of Rx, Gpa2 and Prf. 
HR scores accompanying Fig. 4A. NRCs were activated using Rx/CP (A), Pto/AVRPto (B) or 
Gpa2/RBP1 (C). HR was scored based on a modified 0–7 scale (49) between 5–7 days post-
infiltration. HR scores are presented as dot plots, where the size of each dot is proportional to the 
number of samples with the same score (count). Results are based on 3 biological replicates. 
Statistical tests were implemented using the besthr R library (50). We performed bootstrap 
resampling tests using a lower significance cut-off of 0.025 and an upper cut-off of 0.975. Mean 
ranks of test samples falling outside of these cut-offs in the control samples bootstrap population 
were considered significant. Significant differences between the conditions are indicated with an 
asterisk (*). 





Fig. S9: NRC2D317K abolishes SS15-mediated suppression of all NRC2-dependent sensors 
tested and restores NRC2 resistosome formation. Photo of representative leaves from N. 
benthamiana nrc2/3/4 KO plants showing HR after co-expression of NRC2, or different NRC2 
variants generated with various sensor/effector pairs. These effector-sensor-helper combinations 
were co-expressed with a free mCherry-6xHA fusion protein (EV) or with N-terminally 4xHA-
tagged SS15. (B) SDS-PAGE accompanying BN-PAGE shown in Fig. 4B. Total protein extracts 
were immunoblotted with the appropriate antisera labelled on the left. Approximate molecular 
weights (kDa) of the proteins are shown on the right. Rubisco loading control was carried out using 
Ponceau stain (PS). The experiment was repeated three times with similar results. 



Table S1: List of constructs used in this study. (As separate file) 

Table S2: List of OD600 used for agroinfiltration experiments. (As separate file) 



Table S3: Summary of X-ray data and model parameters for NRC1-SS15. 

Data collection 

Diamond Light Source beamline I03 

Wavelength (Å) 0.9763 

Detector Eiger2 XE 16M 

Resolution range (Å) 51.34 – 4.50 (5.03 – 4.50) 

Space Group P61 

Cell parameters (Å) a = b = 128.6, c = 170.7  

Total no. of measured intensities 77102 (13865) 

Unique reflections 8981 (2263) 

Multiplicity 8.6 (6.1) 

Mean I/s(I) 7.2 (1.5) 

Completeness (%) 94.0 (84.0) 

Rmergea 0.084 (1.513) 

Rmeasb 0.033 (0.612) 

CC½c 0.998 (0.588) 

Refinement 

Resolution range (Å) 51.34 – 4.50 (4.62 – 4.50) 

Reflections: working/freed 8075/883 

Rwork/ Rfreee 0.237/0.275 

MolProbity score/Clashscoref 1.58/5.41 

Ramachandran plot: favoured/allowed/disallowedf (%) 95.9/4.1/0.0 

R.m.s. bond distance deviation (Å) 0.003 

R.m.s. bond angle deviation (°)  0.79 

NRC1 – chains/no. protein residues/ranges 

SS15 – chains/no. protein residues/ranges 

A,C/343/153-494 

B,D/206/18-223 

No. ADP molecules/RSCCg 2/0.72,0.84 

PDB accession code 8BV0 

Values in parentheses are for the outer resolution shell. 
a Rmerge = ∑hkl ∑I |Ii(hkl) - áI(hkl)ñ|/ ∑hkl ∑iIi(hkl).  



b Rmeas = ∑hkl [N/(N - 1)]1/2 × ∑I |Ii(hkl) - áI(hkl)ñ|/ ∑hkl ∑iIi(hkl), where Ii(hkl) is the ith observation 

of reflection hkl, áI(hkl)ñ is the weighted average intensity for all observations I of reflection hkl 

and N is the number of observations of reflection hkl.  
c CC½ is the correlation coefficient between symmetry equivalent intensities from random halves 

of the dataset.  
d The data set was split into “working” and “free” sets consisting of 90 and 10% of the data 

respectively. The free set was not used for refinement.  
e The R-factors Rwork and Rfree are calculated as follows: R = å(| Fobs – Fcalc |)/å| Fobs |, where Fobs 

and Fcalc are the observed and calculated structure factor amplitudes, respectively.  
f As calculated using MolProbity (51).  
g Real Space Correlation Coefficient as calculated by the PDB validation server. 

Movie S1: SS15 immobilizes hinge region between NB and HD1-WHD domains of NRCs to 
prevent NLR activation. 
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