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CRISPR/Cas9 is a rapidly developing genome editing

technology that has been successfully applied in many

organisms, including model and crop plants. Cas9, an RNA-

guided DNA endonuclease, can be targeted to specific

genomic sequences by engineering a separately encoded

guide RNA with which it forms a complex. As only a short RNA

sequence must be synthesized to confer recognition of a new

target, CRISPR/Cas9 is a relatively cheap and easy to

implement technology that has proven to be extremely

versatile. Remarkably, in some plant species, homozygous

knockout mutants can be produced in a single generation.

Together with other sequence-specific nucleases, CRISPR/

Cas9 is a game-changing technology that is poised to

revolutionise basic research and plant breeding.
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Introduction
Creating genetic variation in plant crops is the key to

sustainable agriculture [1]. Plant biotechnology is now

entering a new phase where random mutagenesis

methods, such as EMS mutagenesis and g-radiation,

are being superseded by genome editing technologies

that enable precise manipulation of specific genomic

sequences. Such technologies rely on sequence-specific

nucleases (SSNs), molecular tools used to generate DNA

double-strand breaks (DSBs) at a desired location within

genome. DSBs are repaired by the cell’s endogenous

mechanisms, primarily non-homologous end joining

(NHEJ) and homology-directed repair (HDR). NHEJ

utilises DNA ligase IV to re-join separated ends. If bases

have been deleted or the ends have been processed by
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nucleases, the repair may be imperfect. HDR, however,

uses a template for repair and therefore repairs are likely

to be perfect. In a natural situation the sister chromatid

would be the template for repair, however templates to

recode a target locus or to introduce a new element

between flanking regions of homology can be delivered

with an SSN [2]. In mammalian cells, DSBs were shown

to stimulate homologous recombination at the break site

[3]. In plants, transfer DNAs (T-DNA), delivered during

Agrobacterium-mediated DNA transfer, were also found

to be preferentially integrated into induced DSBs [4], a

considerable advance over earlier experiments, in which

insertions at a desired locus were observed to occur only at

low frequencies if the T-DNA included regions of

homology to the integration site of interest [5]. Despite

this, HDR-mediated gene insertion remains challenging

in plants. To date most genome editing has utilised the

NHEJ pathway to knockout genes (e.g. via introducing a

frameshift mutation or deleting a large fragment) and only

a few instances of gene insertion by HDR have been

reported [6,7]. The reasons may be that the tissues to

which DNA is delivered to plants cells are often com-

posed of determinate cells in which HDR is not the

preferred repair mechanism [8]. Additionally, the deliv-

ered repair template must outcompete the sister chroma-

tid. Also, delivery mechanisms used to deliver SSNs to

plants, such as such as Agrobacterium tumefaciens and

particle bombardment, may not deliver a sufficient

amount of repair template.

In the last decade, several sequence-specific nucleases,

including zinc finger nucleases (ZFNs) and TAL effector

nucleases (TALENs), have been successfully used in

plants, promising to revolutionise conventional plant

breeding and genetic modification [9,10]. ZFNs and

TALENs are artificial bipartite enzymes that consist of

a modular DNA-binding domain and the FokI nuclease

domain. In both cases the DNA-binding domain can be

engineered to recognise a specific DNA sequence. How-

ever, the design and construction of large modular

proteins is both laborious and expensive. In addition,

there is a high rate of failure, at least for ZFNs, to

recognise and cleave the intended DNA sequence [2].

The most rapidly emerging tool is a bacterial monomeric

DNA endonuclease, known as Cas9 (CRISPR-associated

protein 9), which can be targeted to a specific genomic

sequence by an easily engineered 20 base pair (bp) RNA

guide sequence that binds to its DNA target by Watson-

Crick base-pairing [11�]. Target recognition is dependent

on the so-called ‘protospacer adjacent motif’ (PAM), for
www.sciencedirect.com
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which the consensus sequence, NGG, is adjacent to the 30

end of the 20 bp target [11�]. In bacterial genomes, the

gene encoding Cas9 was found in close association with

short, highly homologous sequences arranged in direct

repeats interspaced with non-homologous spacer

sequences [12] (Figure 1a). These regions, which became

known as clustered regularly interspaced short palindro-

mic repeats (CRISPR), were first observed in 1987 [13].

However, their role in prokaryotic adaptive immunity was

only functionally demonstrated in 2007 when it was

shown that the spacer sequences dictate the target of

the endonuclease, with the spacers acquired from exogen-

ous sources, such as an invading phage [14]. Several

CRISPR/Cas immune systems have since been charac-

terised in bacteria and archaea [15] with the type II

system, typified by the Cas9 protein, being repurposed

as an easily programmed tool for facile genome editing. In

its natural state, a spacer-containing crRNA hybridises

with a noncoding, trans-activating crRNA (tracrRNA)

that facilitates DNA cleavage aided by RNase III [16]

(Figure 1a). A fusion of these two RNA moieties into a

‘single guide’ RNA (sgRNA) was initially demonstrated

to be functional in vitro [11�] and subsequently used to

introduce double-strand breaks into specified regions of

mammalian genomes [17,18] (Figure 1b). Because of their

small size, multiple sgRNAs can be co-delivered with

Cas9 to the cell making it possible to simultaneously edit

more than one target at the same time in process called

‘multiplex gene editing’. Because of their large size, and

the requirement for a pair of proteins recognising anti-

parallel DNA strands to induce a DSB, ZFNs and

TALENs are less suited to multiplex gene editing. Sev-

eral other uses of the CRISPR/Cas9 system, including

transcriptional regulation [19,20] and imaging of genetic

loci [21] have also been demonstrated. In this review, we

discuss the structure and mechanism of Cas9, the speci-

ficity of RNA-guided Cas9-mediated genome editing and

its application in plants.

Cas9 nuclease: structure and mechanism of
function
The crystal structures of Cas9 endonucleases of different

sub-types revealed a conserved core and a bi-lobed

architecture with adjacent active sites and two nucleic

acid binding grooves (Figure 2) [22]. The two lobes

include a large globular recognition (REC) lobe con-

nected to a small nuclease (NUC) lobe. The REC lobe

is a Cas9-specific functional domain and is composed of

two domains, REC1 and REC2, and a long a-helical

arginine-rich domain, referred to as the Bridge Helix.

The NUC lobe accommodates two nuclease domains,

RuvC and HNH, and a PAM-interacting domain (PI

domain) (Figure 2a) [22–24]. Two nucleic acid binding

grooves, a wide major groove and a narrow minor groove are

located within the REC and NUC lobes, respectively

[22,23]. Cas9 is a flexible protein that operates alone to

bind and cleave the DNA target in a sequence-dependent
www.sciencedirect.com
manner [22,23,25,26�]. Single particle electron micro-

scopy revealed that Cas9 is maintained in an auto-inhib-

ited conformation in the absence of nucleic acid ligands

and switches to an active form upon guide RNA loading

(Figure 2b) [22]. This triggers conformational rearrange-

ment of both REC and NUC lobes to form a central

channel where the RNA-DNA heteroduplex will later be

positioned [22]. The guide RNA interacts primarily with

the REC lobe to form a binary Cas9-sgRNA complex

[23]. Next, the complex interrogates the DNA double

helix for canonical PAM motifs on the non-complemen-

tary DNA strand (Figure 2c) [22,25]. As Cas9 has no

energy-dependent helicase activity, PAM recognition

has been suggested to destabilize the adjacent sequence

triggering R-loop formation [23,25]. The mechanism of

PAM-dependent DNA recognition and unwinding was

recently elucidated. Initial crosslinking experiments

suggested that two unstructured tryptophan-containing

flexible loops within the PI domain were involved in

PAM recognition [22]. The crystal structure of Cas9 in a

complex with a partially duplexed target DNA contain-

ing the canonical PAM motif and an sgRNA shed light on

the molecular events underlying PAM recognition and

DNA strand separation [26�]. The authors unraveled a

major-groove base-recognition code for PAM binding

where two arginine residues (R1333 and R1335) read out

the PAM GG dinucleotides on the non-complementary

strand. Furthermore, interactions of two other minor-

groove lysine and serine residues (K1107 and S1109) with

the PAM duplex create a K1107-S1109 loop (a ‘phosphate

lock’ loop) that connects with the phosphate group of the

PAM sequence (position +1) in the complimentary

strand (Figure 2d). This allows the phosphate group

orient the complimentary DNA strand for base pairing

and hybridization with the guide RNA, leading to sep-

aration of DNA strands (Figure 2e). The Cas9-sgRNA

complex then probes the flanking DNA for potential

guide RNA complementarity [25]. Base pairing of

matching nucleotides at the seed region (8–12 bp) allows

step-by-step destabilization of the target DNA and guide

RNA-DNA heteroduplex formation (Figure 2f). The

latter is buried within the NUC and REC lobe of

Cas9 to form a four-way junction that mounts the argi-

nine-rich Bridge Helix [26�]. As a result, both nuclease

domains of the NUC lobe become ready for target

cleavage. The mobile HNH domain approaches and

cleaves the complementary strand in the tertiary com-

plex, whereas the RuvC nicks the non-complementary

strand (Figure 2f) [23]. How Cas9 dissociates from the

sgRNA and recycles is still unknown [25]. The structural

studies on Cas9 have provided an insight into how Cas9

may be engineered to create variants with novel PAM

specificities.

CRISPR/Cas9 applications in plants
The CRISPR/Cas9 system has been successfully applied

in model plants, including Nicotiana benthamiana [27–30],
Current Opinion in Biotechnology 2015, 32:76–84
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CRISPR/Cas9: from bacterial immunity to a powerful genome editing tool. (a) In bacterial type II CRISPR/Cas immune systems Cas9, RNaseIII and

a trans-activating crRNA (tracrRNA) are required for maturation of the pre-crRNA, which is transcribed from the CRISPR region. The tracrRNA

base-pairs with the repeat region of the pre-crRNA and is subsequently cleaved by RNaseIII. Cas9 is directed by the crRNA to previously

recognised protospacer sequences in invading DNA and induces a double-strand break. (b) The re-purposed CRISPR/Cas9 system where the

crRNA and tracrRNA are engineered into a single guide RNA (sgRNA) into which a target within the specific genome locus to be modified is

encoded. A nuclear localisation signal is added to the Cas9 to enable import into the eukaryotic nuclear compartment.
Nicotiana tabacum [31] and Arabidopsis [27,29,32–
34,35��,36��], and crops, such as wheat [37,38�,39], maize

[40], rice [32,33,39,41–46], sorghum [29], tomato [47�,48]

and sweet orange [49]. A detailed protocol of targeted

mutagenesis in rice and wheat using the CRISPR/Cas9

system has also recently been published [50]. The process

of creating a genetically edited plant carrying a mutation

in the gene of interest using CRISPR/Cas9 is illustrated in

Figure 3. Mutation frequencies are often described as the

percentage of regenerated plants containing a CRISPR/

Cas9 transgene, in which mutations can be detected at

the locus, or loci, of interest. High efficiency (over 90%)

has been reported in both Arabidopsis [35��] and rice

[41]. If a mutagenesis event occurs early in plant

regeneration, that is, before the first embryogenic cell

divides, a diploid plant may be: first, heterozygous, if

the locus on only one of the two sister chromatids was

mutagenized, second, homozygous, if both alleles were

mutagenized and the breaks were repaired with the

same mutation, or third, biallelic, if both alleles

were mutagenized but repair resulted in different

alleles. In many cases, the mutation would occur later

in development and independently in different tissues
Current Opinion in Biotechnology 2015, 32:76–84
resulting in a chimeric plant consisting of cells with

different genotypes, including wild type, heterozygous,

homozygous or biallelic. CRISPR/Cas9-induced homo-

zygous and biallelic mutations in first-generation trans-

genics have been reported in Arabidopsis [32,33], rice

[44–46] and tomato [47�] allowing early gene-function

studies. If homozygous or biallelic mutants are not

generated as primary transformants, they must be pro-

gressed to the next generation for loss-of-function

phenotype analysis. A number of studies have demon-

strated Mendelian heritability of CRISPR/Cas9-

induced mutations in Arabidopsis [34,35��,36��], rice

[44,45] and tomato [47�].

CRISPR/Cas9 also allows multiplex gene editing by the

simultaneous expression of two or more sgRNAs. This

has been reported in Arabidopsis [27,33], rice [44] and

tomato [47�]. Multiple sgRNAs have also been used to

create chromosomal deletions, from tens to thousands of

DNA base pairs in N. benthamiana [30], Arabidopsis

[27,33], rice (up to 245 kb) [45] and tomato [47�]. Delet-

ing chromosomal fragments allows deletions of entire

clusters of genes [45].
www.sciencedirect.com
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Figure 2

(b) Binary Cas9-sgRNA complex formation

(f) RNA:DNA Heteroduplex formation

REC lobe

NUC lobe

(a) Apo-state

central
 channel

Repeat: 
anti-repeat duplex

Stem 
loop 2

(c) Target DNA interrogation

(d) PAM recognition

guide  
5’

K1107

G G
C C

R1335R1333 RR33

Base pairing

3’5’

5’3’

G G

S1109

K1107

3

R133133333

G
C

R1335RRR

3’5’

5’3’

G

5’

“Phosphate 
lock loop”

(e) DNA unwinding

sgRNA

PAM scanning Active state : sgRNA loading

REC2 REC1

BH

Inactive state

by nuclease domains

DNA distortion 

5’KKK

DNA progression and cleavageInitial DNA destabilization

Stem 
loop1

HNH

RuvC
PI

DNA cleavage R1333

dsDNA

sgRNA

PAM

GG GG
CCCCC CCCC

P

DNA melting

C2

B

uvC

RR1

P

NNG G 3’5’ N

3’

5’3’

5’ 3

5’3’ +1

R1335R

KK
SS11S S1109

K1107

Major Lobes 
rearrangement 

S1109

guide
guide

GG
CC

P

 wrapping around
 target dsDNA

guide

Current Opinion in Biotechnology

w
ith

in
 c

en
tr

al
 c

ha
nn

el

The mechanism of RNA guided DNA cleavage mediated by Cas9. The cartoon highlights important steps in double-stranded DNA cleavage by

Cas9 when guided by an sgRNA. (a) Cas9 has a bi-lobed architecture and opts for an auto-inhibited conformation in the inactive state. The REC

and NUC domains are shown in blue and yellow, respectively. (b) sgRNA loading activates Cas9 to create a binary Cas9-sgRNA complex. Major

rearrangements of the two lobes leads to the formation of a central channel where the RNA-DNA heteroduplex will be positioned. (c) The NUC

domain is reoriented. Cas9 wraps around the double stranded DNA and interrogates it for a PAM motif. (d) Upon recognition of a PAM by the PI

domain, two major groove arginine residues (R1333 and R1335) read out the GG dinucleotide of the PAM, while two other minor groove lysine and

serine residues (K1107 and S1109) interact with the PAM duplex on the complementary strand to create the phosphate lock loop and destabilize the

DNA. (e) The phosphate group (+1 position) connects with the phosphate lock loop. This orients the DNA for base pairing with the seed region (8–

12 bp) of an sgRNA triggering local DNA melting immediately upstream (1–2 bp) of the PAM. (f) The RNA-DNA heteroduplex is formed. The seed

region pairs up with the complementary DNA allowing Cas9 to further separate the DNA in a stepwise manner. The HNH and RuvC nuclease

domains cleave both complementary and non-complementary DNA strands, respectively, at +3 position away from the PAM. The sgRNA is

coloured in orange with the guide sequence highlighted in pink. The complementary DNA strand is coloured in red and the non-complementary

DNA stand in black. REC lobe, recognition lobe; NUC lobe, nuclease lobe; REC1, recognition domain 1; REC2, recognition domain2; BH, Bridge

Helix; HNH, HNH nuclease domain; RuvC, RuvC nuclease domain; PAM, protospacer adjacent motif; PI, PAM-interacting domain; P, phosphate

group; S, serine; K, lysine; R, arginine. The figure is modified from [22,26�].
Genome editing applications that utilise the cell’s

homology-directed repair (HDR) of CRISPR/Cas created

DSBs are also of great interest to the plant research com-

munity. HDR offers the promise of ‘knocking-in’ DNA

fragments, such as tags or new domains, as well as allele

replacements and recoded genes. CRISPR/Cas9 mediated

HDR has been demonstrated [27,32,35��,36��,39]. In most

cases a reporter genes has been used, however Schiml et al.
recently reported the successful insertion of the neomycin

transferase (nptII) selectable marker gene into the

endogenous ALS gene in Arabidopsis [7]. One of the
www.sciencedirect.com
challenges for HDR-mediated genome editing is simul-

taneous delivery of sufficient quantities of the SSN and the

DNA repair template. The use of a nuclear-replicating

DNA virus to produce multiple copies of the delivered

repair template within the plant call has been proposed as a

solution for this [51��].

Choosing the right CRISPR/Cas9 target:
issues of specificity and off-targeting
Off-target activity is of considerable concern for the imple-

mentation of genome editing technologies, particularly for
Current Opinion in Biotechnology 2015, 32:76–84
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Figure 3
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The pipeline of generating a CRISPR/Cas9-mutagenised plant line. c, control; m, mutagenized; RE, restriction enzyme. CELI and T7 are DNA

endonucleases used in the surveyor assay.
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human gene therapy. In plants, off-target mutations are

less problematic as, in most species, background mutations

can be eliminated by back-crossing. The specificity of

CRISPR/Cas9 is determined by the complement of the

guide sequence of the sgRNA and the DNA target. A

perfect match between the last 8–12 bases of the guide

sequence, referred to as the ‘seed sequence’, and the

equivalent region of the DNA target (i.e. the region

proximal to the 50 end of the PAM) is particularly important

for efficient target cleavage by Cas9 [11�,17,43]. However,

mismatches within the PAM-distal region of the target are

generally tolerated [11�,17,43].

Reporter assays and deep sequencing studies in human

cells revealed that Cas9-induced mutations of some

potential off-target sites are below the threshold of the

negative control (<0.01%) [52,53]. However, at off-target

sites that have high identity with the intended target the

mutation rate can be much higher (1.6–43%) [52]. Other

studies have reported even higher off-target activity

[54,55] but the discrepancy may be due to differences

in cell types and sgRNA architecture. It is acknowledged

that off-target activity seems to be locus-dependent and,

until wider evidence is available, generalization of the

reported evidence should be avoided [56].

Whole genome sequencing analysis in plants has uncov-

ered almost negligible mutations at off-target sites

[35��,44]. A study in Arabidopsis of highly homologous

putative alternative target sites, followed by a PAM motif,

showed no activity [35��]. In addition, plants, in which

homozygous or biallelic mutations were identified did not

acquire further mutations in subsequent generations

[35��] indicating that once the target is modified, Cas9

can no longer bind to it.
Table 1

Available bioinformatic tools for selecting optimal CRISPR/Cas9 targe

Site

http://www.genome-engineering.org CRISPR/Cas9 design tool

A. thaliana genome is avail

Directly at: http://crispr.mit.edu/

http://eendb.zfgenetics.org/casot Open-sourced tool that is

off-target sites in any user-

http://plants.ensembl.org/info/

website/ftp/index.html

Download link to access 3

http://www.e-crisp.org/E-CRISP/

designcrispr.html

Web-based tool to design

or individual sequences. Ta

off-targets. 5 plant genome

www.genome.arizona.edu/crispr 8 representative plant geno

low chance of off-target si

https://chopchop.rc.fas.harvard.edu/ Online tool for accurate tar

off-target binding of sgRNA

primers for PCR genotypin

http://www.broadinstitute.org/rnai/

public/analysis-tools/sgrna-design

Online tool for designing h
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A number of approaches have been suggested for the

reduction of off-target activity. Lowering the level of

Cas9 and/or sgRNA expression can reduce off-target

activity, though this may also result in reduced efficacy

at the intended target [54,56]. The use of truncated guide

RNAs (17–18 bp), which are more sensitive to nucleotide

mismatches, were also shown to reduce undesired off-

target mutations [57]. Another approach has been

suggested by the development of Cas9 mutants

[58,59]. Cas9 specificity was increased 100–1500 fold

by the use of a pair of Cas9 nickase variants (Cas9-

D10A or Cas9-H840A), which were directed to targets

on opposite DNA strands up to 100 bp apart. The pair of

induced nicks, one on each strand, resulted in a DSB

whereas potential off-target sites were unlikely to be

sufficiently close to each other to induce more than

individual nicks, which are generally perfectly repaired

[58,59]. Off-target mutation rates have been reduced up

to 5000-fold, by fusing a catalytically dead Cas9 (dCas9)

to the FokI nuclease [60,61]. The resulting Cas9 variant,

dCas9-FokI, was used to target DNA sites with two Cas9

targets spaced 15–25 bp and located on opposite DNA

strands. Again, the requirement of two, correctly posi-

tioned 20 bp DNA targets is responsible for the increased

specificity [60,61]. The ability to select unique targets in

the genome eliminates the need for sgRNA/Cas9 modi-

fications described above. To this end, a number of

bioinformatics tools have been developed to scan gen-

omes for unique targets, several being available online

(Table 1).

As is the case with specificity, the efficiency of CRISPR/

Cas9 may be influenced by the sequence, location and

context of the target. Epigenetic factors, such as DNA

methylation or histone modification are known to limit
t sites and predicting off-targets

Purpose Reference

to find target sites within an input sequence.

able.

[56,58]

used locally, designed to identify potential

specified genome.

[66]

8 plant genomes.

sgRNA sequences for genome-library projects

rget site homology is also evaluated to predict

s are available.

[67]

mes are available to predict sgRNAs with

tes.

[68]

get sequence selection and prediction of

s. Includes the design of target-specific

g. The only plant genome available is A. thaliana.

[69]

ighly active sgRNAs. [64�]
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some DNA-binding proteins. However, in vitro and in
vivo assays have both demonstrated that Cas9 efficiently

cleaves methylated DNA [56]. Chromatin immunopreci-

pitation (ChIP-seq) analysis has shown that sgRNA-

guided Cas9 preferentially binds to open chromatin

regions including off-target sites [62,63].

Interestingly, Hsu et al. discovered that the NAG

sequence can serve as a non-canonical PAM, although

in this case the efficiency of target recognition by Cas9 is

reduced by 80 per cent [56]. Within the PAM motif, a

cytosine as the variable nucleotide strongly enhances

Cas9 specificity [64�]. In addition, optimal Cas9 activity

is obtained when the PAM sequence does not have a

guanine adjacent to its 30 end (i.e. the PAM consensus

sequence has now been extended to four nucleotides

(CGGH)) [64�]. Recent reports also demonstrated that

purine bases at positions 17 to 20 within the DNA target

increase Cas9 efficiency, while pyrimidine bases decrease

it [64�,65]. Whether these observations, made mostly in

mammalian cells, will be relevant to targets in plants is

not yet known.

Conclusions
The CRISPR/Cas9 system is the most recent addition to

the toolbox of sequence-specific nucleases that includes

ZFNs and TALENs. The simplicity and robustness of

this system makes it as an attractive genome editing tool

for plant biology. To date, the primary application has

been the creations of gene knockouts. As multiple

sgRNAs can be easily assembled into a single delivery

vector, for example using Golden Gate cloning [30,47�],
one can foresee application of the CRISPR/Cas9 for

knocking-out whole gene families. Large chromosomal

deletions (up to 245 kb) generated with CRISPR/Cas9

have also been reported [45] opening up opportunities for

deleting gene clusters. Harnessing homologous recombi-

nation for gene-addition remains an important challenge

for plant genome editing. In plants, the degree to which

off-target mutations take place still needs to be system-

atically addressed. Nevertheless, a few published studies

reported low to negligible off-target activity compared to

animal systems. With the increased toolbox of Cas9

variants and publicly available bioinformatic tools to

enable high-specificity (Table 1), this technology posi-

tions itself at the forefront of genome editing methods.

Being an easy and affordable tool, CRISPR/Cas9

promises to revolutionise basic and applied plant

research.
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