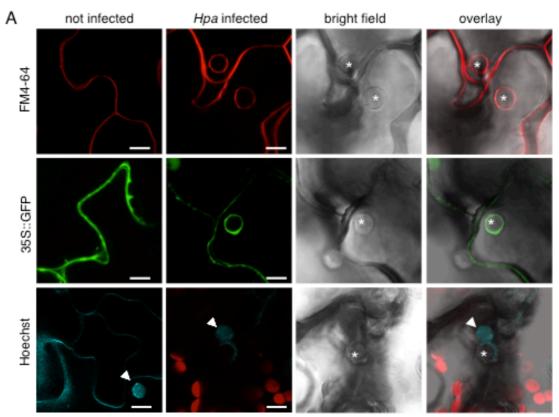
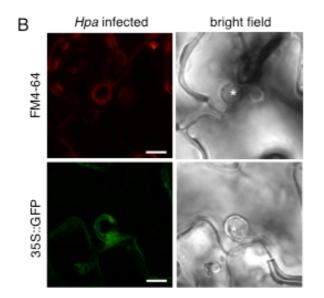
Supplementary Table 1. Markers and lines used in this study. Arabidopsis plants stably expressing fluorescent-tagged markers (At line) were used for *Hyaloperonospora arabidopsidis (Hpa)* infections; transient expression of the respective markers (construct) in *N. benthamiana* (Nb) was used for *Phytophthora infestans (Pi)* infections; plasma membrane (PM), endoplasmatic reticulum (ER), trans-Golgi network (TGN), extrahaustorial membrane (EHM).

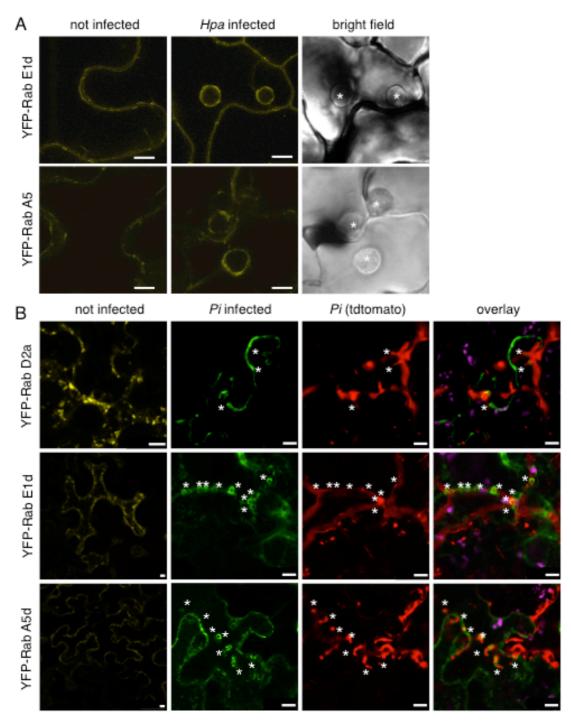

Gene/Marker	Localization	At line/construct	Reference	Interactio	on tested
PIP1;4	PM	WAVE138y	1	At-Hpa	Nb-Pi
ACA8	PM	ACA8-GFP/YFP	2	At-Hpa	Nb-Pi
REM1 [*]	PM	YFP-StREM1	3		Nb-Pi
SYT1	PM/ER	SYT1-GFP	4		Nb-Pi
EFR	PM/ER	EFR-YFP	5		Nb-Pi
PEN1	PM/Endosome	GFP-PEN1	6	At-Hpa	Nb-Pi
FLS2	PM/Endosome	FLS2-GFP	7	At-Hpa	Nb-Pi
RPW8.2	Golgi/ER/EHM	RPW8.2-YFP	8	At-Hpa	
Rab D2a	Golgi/ER	WAVE29y	1		Nb-Pi
SYP32	Golgi	WAVE22y	1	At-Hpa	Nb-Pi
Got1p	Golgi	WAVE18y	1	At-Hpa	Nb-Pi
Rab E1d	Golgi/Post-Golgi	WAVE27y	1	At-Hpa	Nb-Pi
VAMP722	Post-Golgi	GFP-VAMP722	9		Nb-Pi
Rab A5d	TGN/Post-Golgi	WAVE24y	1	At-Hpa	Nb-Pi
VTI12	TGN/Early endosome	WAVE13y	1	At-Hpa	Nb-Pi
VPS28-2	TGN/Early endosome	Y/RFP-VPS28-2	this study	At-Hpa	Nb-Pi
VPS37-1	TGN/Early endosome	YFP-VPS37-1	this study		Nb-Pi
Rab A1e	Endosome	WAVE34y	1	At-Hpa	
Rab C1	Endosome	WAVE3y	1	At-Hpa	
Rab F2b (ARA7)	Endosome	mRFP-ARA7	10	At-Hpa	
Rab F2a (Rha1)	Endosome	WAVE7y	1		Nb-Pi
Rab F1 (ARA6)	Late endosome	ARA6-mRFP	10	At-Hpa	
FYVE ^{**}	Late endosome	GFP-2xFYVE	11	At-Hpa	Nb-Pi
Rab G3f	Vacuole/Late endosome	WAVE5y	1	At-Hpa	
Rab G3c	Vacuole/Late endosome	WAVE11y	1		Nb-Pi
VAMP711	Vacuole	WAVE9y	1	At-Hpa	

Markers without asterisk are originating from Arabidopsis; * potato; ** FYVE domain from the mouse hepatocyte growth factor-regulated tyrosine kinase substrate; ¹Geldner et al., 2009; ²Frei dit Frey et al., 2011; ³Lefebvre et al., 2010; ⁴Schapire et al., 2008; ⁵Häweker et al., 2010; ⁶Meyer et al., 2009; ⁷Göhre et al., 2008; ⁸Wang et al., 2009; ⁹Lipka et al., 2005; ¹⁰provided by K. Schumacher; ¹¹Vermeer et al., 2006

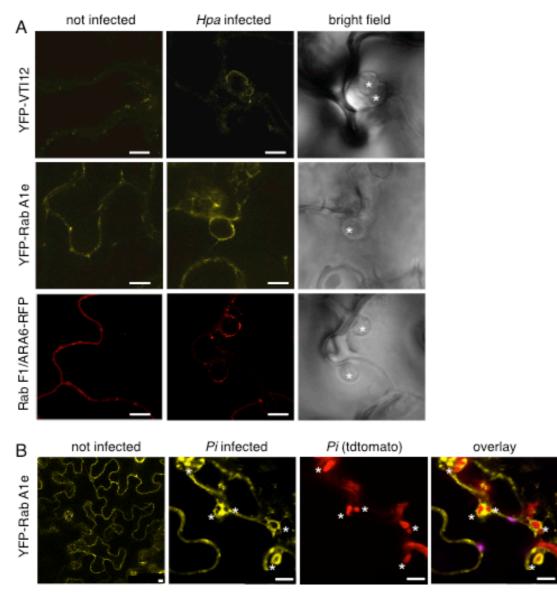

Supplementary Table 2. Summary of marker localization in the absence and presence of *Hyaloperonospora arabidopsidis (Hpa)* and *Phytophthora infestans (Pi)* infection in *A. thaliana* (At) and *N. benthamiana* (Nb). Detection of fluorescent signals: clear discrete signal (discrete); weak widespread signal (diffuse); at cell periphery (periphery); at spots (vesicles); not at haustoria (excluded); at haustoria (surrounding); at extrahaustorial membrane (EHM); at haustorial encasements (encased); accumulates at haustoria (+); reduced (-); no difference in localization between uninfected and infected (no difference).

Marker	At	At	Нра	Nb	Nb	Pi
	uninfected	infected	haustoria	uninfected	infected	haustoria
PIP1;4	Periphery	Periphery	Excluded	Periphery	Periphery	Excluded -
	discrete	discrete	Encased	discrete	diffuse	
ACA8	Periphery	Periphery	Excluded	Periphery	Periphery	Excluded
	discrete	discrete	Encased	discrete	discrete	
REM1				Periphery	Periphery	Surrounding
				discrete	discrete	
SYT1				Periphery	Periphery	Surrounding +
				discrete	discrete	
EFR				Periphery	Periphery	Excluded
				discrete	discrete	
PEN1	Periphery	Periphery	Surrounding	Vesicles		
	discrete	discrete	EHM	discrete		
		Vesicles	Encased			
FLS2	Periphery	Periphery	Surrounding	Periphery	Periphery	Excluded
	discrete	discrete	EHM	discrete	discrete	
RPW8.2	Not	Vesicles	Surrounding +			
	expressed	discrete	Encased			
Rab D2a				Periphery	Periphery	Surrounding
				Vesicles	Vesicles	
				diffuse	diffuse	
SYP32	Vesicles	Vesicles	Surrounding +	Vesicles	Vesicles	No difference
	discrete	discrete	Encased	discrete	discrete	
Got1p	Vesicles	Vesicles	Surrounding	Vesicles	Vesicles	No difference
	discrete	discrete	Encased	discrete	discrete	
Rab E1d	Periphery	Periphery	Surrounding	Vesicles	Vesicles	Surrounding +
	Vesicles	Vesicles	Encased	discrete	discrete	
	discrete	discrete				
VAMP722				Vesicles	Vesicles	Surrounding

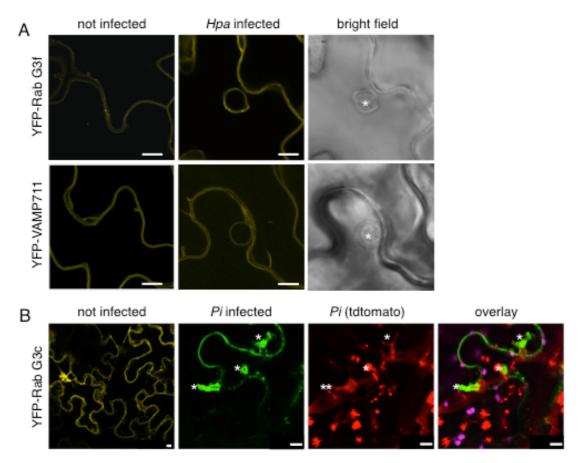
				discrete	discrete	(callosic) +
Rab A5d	Periphery	Periphery	Surrounding	Vesicles	Vesicles	Surrounding +
	diffuse	diffuse	Encased	diffuse	diffuse	
VTI12	Vesicles	Vesicles	Surrounding	Vesicles	Vesicles	No difference
	diffuse	diffuse	Encased	diffuse	diffuse	
VPS28-2	Vesicles	Vesicles	Surrounding	Periphery	Periphery	Surrounding
	distinct	distinct		Vesicles	Vesicles	
				distinct	distinct	
VPS37-1				Periphery	Periphery	Surrounding
				Vesicles	Vesicles	
				distinct	distinct	
Rab A1e	Periphery	Periphery	Surrounding	Vesicles/	Vesicles	Surrounding +
	Vesicles	diffuse	Encased	ER?	diffuse	
	diffuse					
Rab C1	Periphery	Periphery	Surrounding			
	Vesicles	Vesicles	Encased			
	discrete	discrete				
Rab F2b	Vesicles	Periphery	Surrounding			
ARA7	discrete	diffuse	Encased			
Rab F2a				Vesicles	Vesicles	Surrounding +
Rha1				diffuse	diffuse	
Rab F1	Periphery	Periphery	Surrounding			
ARA6	Vesicles	Vesicles +	Encased			
	discrete	discrete				
FYVE	Periphery	Periphery	Surrounding	Periphery	Tonoplast	Surrounding
	Vesicles	Vesicles -	Encased	Tonoplast	Vesicles	
	discrete	discrete		Vesicles	discrete	
				discrete		
Rab G3f	Periphery	Periphery	Surrounding			
	discrete	discrete	Encased			
Rab G3c	Periphery	Periphery	Surrounding	Tonoplast	Tonoplast	Surrounding +
	diffuse	diffuse	Encased	discrete	Vesicles	
					discrete	
VAMP711	Periphery	Periphery	Surrounding			
	discrete	discrete	Encased			



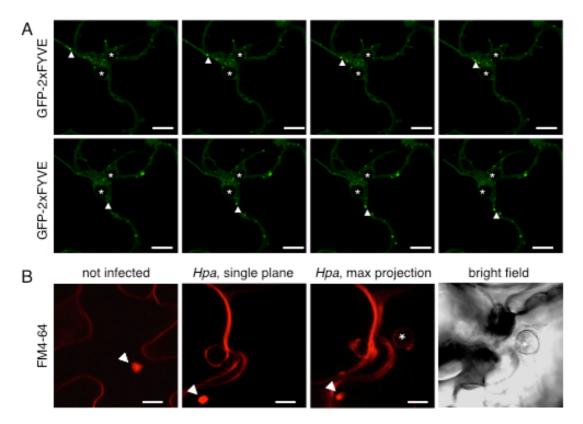
Supplementary Figures

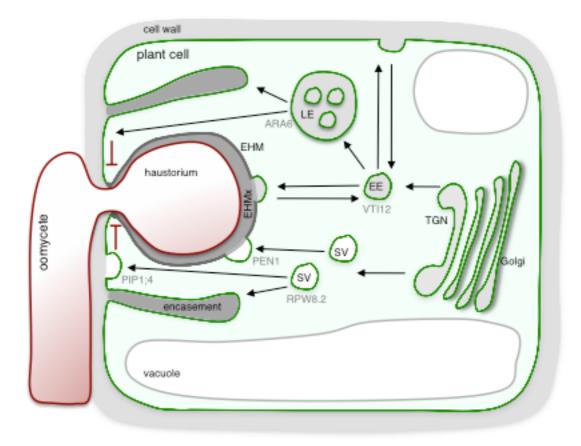

Supplementary Figure 1. Imaging Hpa haustoria. Arabidopsis Col-0 wild type and 35S::GFP transgenic lines were infected with *Hpa* isolate Waco and haustoria were imaged by confocal microscopy. At 3 dpi wild type leaves were incubated with the membrane dye FM4-64, or nuclear stain Hoechst, respectively. Confocal micrographs show cross-sections of not infected and *Hpa* infected leaves. *Hpa* haustoria are shown

in bright field images indicated by asterisks. (A) Membrane FM4-64 and cytosolic 35S::GFP signals are visible at the host cell periphery and around young haustoria. The Hoechst signal is visible in the nucleus in close proximity to the haustorium. (B) FM4-64 membrane and 35S::GFP cytosol labelling shows the double-layered structure of encasements of old *Hpa* haustoria. Bar = 10 µm.



Supplementary Figure 2. Secretory vesicles differentially localize around *Hpa* and *Pi* haustoria. (A) Confocal micrographs of Arabidopsis transgenic lines expressing the indicated fluorophore fusions show cross-sections of not infected and *Hpa*-infected leaves at 3 dpi. *Hpa* haustoria are shown in bright field images indicated by asterisks. YFP-Rab E1d and YFP-Rab A5d signals are detected around *Hpa* haustoria. Bar = 10 μ m. (B) Confocal micrographs of *N. benthamiana* leaves transiently expressing the indicated fluorophore fusions show cross-sections of not infected and *Pi*-infected


leaves at 3 dpi. Pi haustoria are indicated by asterisks. YFP-Rab D2a, YFP-Rab E1d and YFP-Rab A5d are surrounding Pi haustoria. Bar = 10 μ m.


Supplementary Figure 3. Endosomal compartments differentially localize around *Hpa* and *Pi* haustoria. (A) Confocal micrographs of Arabidopsis transgenic lines expressing the indicated fluorophore fusions show cross-sections of not infected and *Hpa*-infected leaves at 3 dpi. *Hpa* haustoria are shown in bright field images indicated by asterisks. YFP-VTI12, YFP-Rab A1e, and ARA6-RFP signals are present at *Hpa* haustoria. Bar = 10 μ m. (B) Confocal micrographs of *N. benthamiana* leaves transiently expressing the indicated fluorophore fusions show cross-sections of not infected and *Pi*-infected leaves at 3 dpi. *Pi* haustoria are indicated by asterisks. While YFP-VTI12 does not surround haustoria, YFP-Rab A1e accumulates around *Pi* haustoria. Bar = 10 μ m.

Supplementary Figure 4. Proteins labelling the vacuolar tonoplast localize around *Hpa* and *Pi* haustoria. (A) Confocal micrographs show cross-sections of Arabidopsis transgenic leaves expressing the indicated fluorescent-tagged proteins not infected and *Hpa*-infected at 3 dpi. *Hpa* haustoria are shown in bright field images indicated by asterisks. YFP-Rab G3f and YFP-VAMP711 signals are surrounding *Hpa* haustoria. Bar = 10 μ m. (B) Confocal micrographs of *N. benthamiana* leaves transiently expressing the indicated fluorophore fusions show cross-sections of not infected and *Pi*-infected leaves at 3 dpi. *Pi* haustoria are indicated by asterisks. YFP-Rab G3f and YFP-VAMP711 signals are surrounding *Hpa* haustoria. Bar = 10 μ m. (B) Confocal micrographs of *N. benthamiana* leaves transiently expressing the indicated fluorophore fusions show cross-sections of not infected and *Pi*-infected leaves at 3 dpi. *Pi* haustoria are indicated by asterisks. YFP-Rab G3c accumulates around *Pi* haustoria. Bar = 10 μ m.

Supplementary Figure 5. Hpa haustoria-containing cells maintain endosomal trafficking. (A) Arabidopsis Ler transgenic lines expressing GFP-2xFYVE as a marker for late endosomal compartments were infected with Hpa isolate Cala 2 and haustoria were imaged at 3 dpi. Time-lapse imaging by confocal microscopy shows cross-sections of Hpa infected leaves over 815 ms. Hpa haustoria are indicated by asterisks. The GFP-2xFYVE signal is visible at the host cell periphery, some emerging plasma membrane strands and at the EHM of *Hpa* haustoria. The arrows indicate vesicle movement towards the haustorial site (upper panel) and away from the haustorium (lower panel). Bar = $10 \mu M$. (B) Arabidopsis Col-0 plants were infected with Hpa isolate Waco 9, and at 3 dpi leaves were treated with BFA and stained with FM4-64. Confocal micrographs show cross-sections of not infected and Hpa-infected leaves. Hpa haustoria are shown in bright field images indicated by asterisks. The FM4-64 signal is visible at the plant cell plasma membrane, at BFA bodies indicated by arrows, and at the Hpa EHM. The BFA body is detected in a different focal plane of the haustoria-containing cell shown by single plane and maximal projection. Bar = $10 \mu m$.

Supplementary Figure 6. Schematic representation of membrane trafficking in oomycete infected plant cells. Secretory vesicles deliver proteins such as PIP1;4 to the plasma membrane, but their lateral diffusion and incorporation into the extrahaustorial membrane must be prevented by the pathogen (EHM; red lines). Secretory vesicles may also deliver proteins like PEN1 to the EHM. Early endosomes (EE) may interact with the EHM and regulate presence of proteins at the EHM via recycling trafficking. Late endosomes (LE)/multivesicular bodies may contribute to enveloping the haustorium but proteins are sorted at the haustorial neck. As a result of recruitment of default membrane trafficking pathways, secretory vesicles, early and late endosomes contribute in the biogenesis of the encasement. TGN: *trans*-Golgi network; EHMx: extrahaustorial matrix; black arrows: proposed membrane trafficking pathways; molecular markers are highlighted in grey.

Supplementary References

- Frei dit Frey, N, Mbengue, M., Kwaaitaal, M., Nitsch, L., Altenbach, D., Häweker,
 H., Lozano-Duran, R., Njo, M.F., Beeckman, T., Hüttel, B., Borst, J.W.,
 Panstruga, R., Robatzek, S. (2011) A plasma membrane calcium ATPase functions in FLS2-mediated immunity. Submitted.
- Geldner, N., Dénervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.D., and Chory, J. (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. *Plant J* 59: 169-178.
- Göhre, V., Spallek, T., Häweker, H., Mersmann, S., Mentzel, T., Boller, T., *et al.* (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. *Curr Biol* 18: 1824-1832.
- Häweker, H., Rips, S., Koiwa, H., Salomon, S., Saijo, Y., Chinchilla, D., *et al.* (2010) Pattern recognition receptors require N-glycosylation to mediate plant immunity. *J Biol Chem* 285: 4629-4636.
- Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Hervé, C., Tóth, K., *et al.* (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. *Proc Natl Acad Sci USA* **107**: 2343-2348.
- Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M. et al. (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310: 1180-1183.
- Meyer, D., Pajonk, S., Micali, C., O'Connell, R., Schulze-Lefert, P. (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. *Plant J* 57: 986-999.
- Schapire, A.L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., *et al.* (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. *Plant Cell* 20: 3374-3388.
- Vermeer, J.E., van Leeuwen, W., Tobeña-Santamaria, R., Laxalt, A.M., Jones, D.R., Divecha, N., *et al.* (2006) Visualization of PtdIns3P dynamics in living plant cells. *Plant J* 47: 687-700.
- Wang, W., Wen, Y., Berkey, R., and Xiao, S. (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. *Plant Cell* 21: 2898-2913.