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SUMMARY

Rcr3 and Pip1 are paralogous secreted papain-like
proteases of tomato. Both proteases are inhibited
by Avr2 from the fungal pathogen Cladosporium ful-
vum, but only Rcr3 acts as a co-receptor for Avr2
recognition by the tomato Cf-2 immune receptor
[1–4]. Here, we show that Pip1-depleted tomato
plants are hyper-susceptible to fungal, bacterial,
and oomycete plant pathogens, demonstrating that
Pip1 is an important broad-range immune protease.
By contrast, in the absence of Cf-2, Rcr3 depletion
does not affect fungal and bacterial infection levels
but causes increased susceptibility only to the oomy-
cete pathogen Phytophthora infestans. Rcr3 and
Pip1 reside on a genetic locus that evolved over 36
million years ago. These proteins differ in surface-
exposed residues outside the substrate-binding
groove, and Pip1 is 5- to 10-fold more abundant
than Rcr3. We propose a model in which Rcr3 and
Pip1 diverged functionally upon gene duplication,
possibly driven by an arms race with pathogen-
derived inhibitors or by coevolution with the Cf-2
immune receptor detecting inhibitors of Rcr3, but
not of Pip1.

RESULTS AND DISCUSSION

Rcr3 and Pip1 Reside on an Ancient Gene Cluster and
Differ in Relative Expression Levels and Surface-
Exposed Residues
Analysis of the tomato genome sequence [5] revealed that Rcr3

and Pip1 reside on a 70-kb genetic cluster on the short arm of

chromosome 2 in the tomato genome (Figure 1A). The Rcr3/

Pip1 locus contains two more predicted genes encoding

papain-like Cys proteases, which we named Rfp1 and Pfp1,

for Rcr3- and Pip1-flanking proteases. The gene cluster is inter-

spersed by an array of five predicted genes encoding GDSL li-

pases (Lip1-5). The locus is flanked by predicted genes encoding

a member of the unidentified protein family 52 (UPF52) and an

RPW8-like atypical resistance protein [6]. Most Rfp1 transcripts

carry an unspliced intron absent in the other protease genes (Fig-

ure S1A). Analysis of the open reading frames of the four tomato

protease genes indicates that all these genes encode intact pro-

teins containing a signal peptide, a prodomain with ERFNIN

motif, and a protease domain with an intact Cys-His-Asn cata-

lytic triad and three disulphide bridges (Figure S1B). All four pro-

teases belong to the SAG12 subfamily [7].

Analysis of RNA sequencing data [8] showed that all 11 genes

except Lip3 are transcribed in leaves but with different relative

expression levels (Figures 1B and S1C). Pip1 transcripts are

most abundant in leaves, followed by Pfp1 and Rcr3. Inoculation

with the fungal pathogenCladosporium fulvum (both virulent and

avirulent races) and a pathogenic strain of the bacterial pathogen

Pseudomonas syringae causes significant increases in transcript

levels of only Rcr3 and Pip1 in both Money Maker (MM) and Rio

Grande 76S (RG) cultivars (Figures 1B and 1C) [8]. Furthermore,

quantitative proteomic analysis only detected Rcr3 and Pip1

proteins in leaf apoplast isolated from tomato leaves, and treat-

ment with the salicylic acid analog benzothiadiazole (BTH)

increased Pip1 protein levels (Figure 1D). These data indicate

that Pip1 protein is over 10-fold more abundant than Rcr3 in

tomato apoplast. Consistently, Pip1 transcript levels were 5- to

10-fold higher than Rcr3 levels in cultivars MM, RG, M82, and

Heinz and in wild tomato relatives S. pimpinellifolium and

S. pennellii (Figure S1D) [5,9].

Analysis of the genome sequences of potato [10] and pepper

[11, 12] showed that orthologs of Rcr3 and Pip1 reside at syn-

tenic gene clusters on the short arm of chromosome 2 (Fig-

ure 1A). The gene clusters are larger in potato and pepper due

to gene duplication and larger intergenic regions, but the order

and direction of the genes is similar. Both Rfp1 and Rcr3 have

duplicated several times in the genomes of potato and pepper,

resulting in mixed Rfp1-Rcr3 clusters of six and five genes,

respectively. A Pip1-Pfp1 gene pair is present in potato and

pepper downstream of the lipase gene cluster, and Pip1 is dupli-

cated in the potato genome sequence. As in tomato, Pip1 tran-

script levels are 5- to 10-fold higher than Rcr3 in potato and

pepper leaves (Figure S1D).
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The protease genes fall into four well-supported phylogenetic

clades separating the paralogs from each other (Figure 1E).

Consistent with their taxonomic relation, pepper genes are

more diverged from the tomato and potato orthologs. By

contrast, the lipase-encoding genes are all closely related (Fig-

ure S1E). The phylogenetic clades indicate that the proteases

have evolved independently from each other, despite residing

at the same locus, where homogenization by recombination

and/or intragenic gene conversion is common. TheCf resistance

genes, for example, also reside in clusters that showed clear

evidence of sequence exchange between paralogs, which is

thought to generate novel resistance specificities [13, 14]. How-

ever, nucleotide identity between the protease genes is <62%

(Table S1), which is below the >80% identity required for homog-

enization [15, 16], and alignments of tomato and potatoRcr3 and

Pip1 did not display any larger stretch of shared polymorphisms

(Figure S1F), indicating that Rcr3 and Pip1 evolved indepen-

dently at least since the speciation of tomato and potato,

�7.3 million years ago [5].

Comparison of structural models generated for tomato and

potato Rcr3 and Pip1 proteins, based on the castor bean endo-

protease (1s4v [17]), displayed the amino acid differences be-

tween the Rcr3 and Pip1 proteases (Figures 1F and S1G). The

substrate-binding groove and interior of Rcr3 and Pip1 are

similar, and the differences between the two proteases reside

mostly on the solvent-exposed protein surface (Figures 1F and

S1H). This indicates that Rcr3 and Pip1 may have similar interac-

tions with substrates that target the substrate-binding groove

but may interact with different proteins in the remainder protein

surface.

In the Absence of Cf-2, Rcr3 Does Not Affect Fungal or
Bacterial Infection but Suppresses Oomycete Infection
To investigate the role of Rcr3 in the absence of the Cf-2 resis-

tance gene, we crossed MM-Cf0 (carrying Rcr3lyc but lacking

Cf-2) with MM-Cf2 (carrying Rcr3pim andCf-2) and with a mutant

MM-Cf2 line carrying the rcr3-3pim allele with a premature trans-

lation stop codon [1] (Figure 2A). Two homozygous lines of both

MM-Cf0/Rcr3pim (lines #A and #B) and MM-Cf0/rcr3-3pim

(lines #C and #D) were selected and confirmed by PCR using

gene-specific primers and sequencing (Figure S2B). As ex-

pected for unlinked genes, the segregation of both Cf-2 and

Rcr3 was Mendelian and independent in both crosses (Fig-

ure S2A). Necrotic phenotypes caused by the interaction

between Rcr3lyc (the Rcr3 from cultivated tomato) and Cf-2 (in-

trogressed from S. pimpinellifolium) were also observed in these

crosses. Notably, the necrotic phenotype of Rcr3lyc is dominant

over rcr3-3pim but recessive over Rcr3pim (Figures 2A and

S2A) [1]. These data support a biochemical competition model

in which Rcr3lyc protein interacts with Cf-2 but that Rcr3pim pro-

tein (which appears to have co-evolved with Cf-2) can outcom-

pete Rcr3lyc and prevent necrotic responses (Figure S2C).

Sequencing Rcr3 transcripts in the F1 hybrids revealed that

Rcr3lyc transcript levels are always 4-fold lower when compared

to Rcr3pim (Figure S2D), which is not inconsistent with the

biochemical competition model.

We performed disease assays to study the role of Rcr3 in the

absence ofCf-2. Quantitative disease assays with C. fulvum and

P. syringae did not reveal any significantly altered resistance or

susceptibility in the Cf0/rcr3-3 lines when compared to the

Cf0/Rcr3pim control lines (Figures 2B and 2C). Previous work

demonstrated that MM-Cf2/rcr3-3pim plants are more suscepti-

ble to the oomycete pathogen Phytophthora infestans than

MM-Cf2/Rcr3pim plants [18]. Notably, disease assays also re-

vealed that MM-Cf0/rcr3-3pim plants are slightly but still signifi-

cantly more susceptible to P. infestans when compared to

MM-Cf0/Rcr3pim plants (Figure 2D), indicating that Rcr3pim con-

tributes to resistance to P. infestans independently of the Cf-2

resistance gene.

Pip1 Is a Major Immune Protease against Various
Apoplastic Pathogens
To study the role of Pip1 in immunity, MM-Cf0 plants were trans-

formed with an antisense Pip1 construct, and two independent

transformants were selected for further analysis (Figure 3A).

qRT-PCR analysis revealed a selective transcript reduction of

Pip1, but not of Rcr3 or C14 protease genes (Figure 3B). Like-

wise, western blot analysis of apoplastic proteomes did not

display Pip1 protein in MM-Cf0/asPip1 plants, whereas C14 pro-

tein levels remained unaltered (Figure 3C). Protease activity

profiling of these apoplastic proteomes revealed that a 25-kDa

signal is missing in MM-Cf0/asPip1 plants, whereas the absence

of Rcr3 does not affect the activity profile (Figure 3D). Strongly

reduced Pip1 levels are not associated with defects in growth

and development (Figure S3A).

Infection assays with C. fulvum revealed that disease symp-

toms developed faster and sporulation was increased on

MM-Cf0/asPip1 plants, as compared to MM-Cf0, and qRT-

PCR analysis confirmed a 5-fold increased fungal biomass

accumulation (Figure 3E). The MM-Cf0/asPip1 plants are

also more susceptible for P. syringae pv. tomato DC3000

(PtoDC3000), supporting a 10-fold increased bacterial growth

when compared to MM-Cf0 (Figure 3F). A similar increase in

bacterial growth was observed upon inoculation with the less

virulent DavrPto/DavrPtoB double mutant of PtoDC3000 (Fig-

ure S3B). Finally, lesions caused by P. infestans on MM-Cf0/

asPip1 plants grow 4-fold faster when compared to MM-Cf0

control plants (Figure 3G). These data demonstrate that Pip1

is an important contributor to broad-range immunity against

three unrelated pathogens that colonize the apoplast of tomato

leaves.

The important role of Pip1 explains why this protease is tar-

geted by unrelated pathogen-derived inhibitors [3, 19]. The role

of Pip1 in immunity is presumably dependent on proteolytic ac-

tivity and can be direct (inactivating pathogen proteins) or indi-

rect (releasing elicitors from host or pathogen). Further studies

on the substrates of Pip1 are required to understand how it con-

fers immunity and how it may discriminate between self and non-

self proteins in the apoplast.

We conclude that in the absence of Cf-2, Rcr3 does not signif-

icantly contribute to immunity against C. fulvum or P. syringae,

whereas Pip1 does. By contrast, both Rcr3 and Pip1 contribute

to immunity against P. infestans in the absence of Cf-2, but Pip1

seems to contribute significantly more to immunity than Rcr3.

These findings suggest that Rcr3 plays different roles in different

pathosystems. There are several possibilities to explain these

different roles: (1) Rcr3 and Pip1 proteases might act on different

substrates and thereby affect different pathogens in different
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Figure 1. Analysis of Rcr3/Pip1 Gene Clusters, Expression Levels, and Structural Models of Rcr3 and Pip1

(A) Synteny of the Rcr3/Pip1 gene clusters in tomato, potato, and pepper. The closest homologs between the different genome sequences are indicated with

connecting lines. The different 10-kb scales on the right indicate the extent of expansion of the differentRcr3/Pip1 loci. Color codes:Rfp1 (yellow),Rcr3 (red), Pip1

(blue), and Pfp1 (green).

(B) Transcript level of genes of the Rcr3/Pip1 locus of susceptible (MM-Cf0) and resistant (MM-Cf4) tomato inoculated with or without C. fulvum race 5. 4-week-

old plants were spray inoculated with 1 3 106 conidia/ml or mock inoculated, and RNA was extracted 6 days later. The transcriptome was sequenced, and the

reads per kilobase per million (RPKM values) were extracted and plotted for each gene of the Rcr3/Pip1 locus. The error bars represent the SE of three biological

replicates. Only upregulation of Rcr3 and Pip1 was over 2-fold and statistically significant (p < 0.01).

(legend continued on next page)
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ways. The high similarity of the putative substrate-binding

groove of Rcr3 and Pip1 would not support this hypothesis,

but this remains to be verified with detailed substrate studies.

(2) Rcr3 still functions in P. infestans recognition even in the

absence of Cf-2. Notably, there are two Cf-2-like genes

(Hcr2-0A and Hcr2-0B) located on the allelic locus in MM-Cf0

[14, 20]. It is possible that their products could interact with

Rcr3 and perceive P. infestans infection, perhaps by detecting

P. infestans effectors other than EpiCs. (3) Rcr3 and Pip1

contribute to defense to the same extent as their relative abun-

dance, and the observed effect against P. infestans is because

this pathogen is more sensitive to apoplastic proteases.

Cf-2/Rcr3 is an important example of indirect perception

mechanisms in plants, which has been interpreted by the Guard

Model [21, 22]. TheGuardModel predicts that resistance (R) pro-

teins act by monitoring (guarding) the manipulation of host tar-

gets by pathogen-derived effector proteins. This Guard Model,

however, implies a fitness benefit for manipulation of the guar-

dee (Rcr3) by the effector protein (Avr2 from C. fulvum) in the

absence of the R protein (Cf-2). The discovery that Avr2 also tar-

gets the more abundant Pip1 [3] led us previously to propose the

Decoy Model, which predicts that the guarded host target only

acts as co-receptor in the presence of the R proteins but has

no role in its absence. This Decoy Model has become an impor-

tant concept explaining many observations in indirect percep-

tion mechanisms including Pto, PBS1, the promoter of Bs3

[23], and more recently, the pseudokinases ZED1 and RKS1, re-

ceptor-like protein RFO2, and integrated decoy RRS1 [24–28].

Our data on Rcr3 support both the Guard Model and the

Decoy Model, depending on the pathogen. The Decoy Model

is supported by the fact that in the absence of Cf-2, Rcr3 does

not significantly contribute to defense against C. fulvum. How-

ever, the Guard Model is supported by the finding that Rcr3 con-

tributes to defense against P. infestans in the absence of Cf-2,

though its contribution seems relatively minor when compared

to that of Pip1. Decoys are expected to have lost some of their

biochemical activities. For instance, ZED1 and RKS1 are inactive

pseudokinases [24, 26]. However, Rcr3 is still an active protease

that appears to function as a decoy in some plant-pathogen in-

teractions, but not in others.

Based on these observations we propose evolutionary models

for Rcr3 and Pip1 (Figure 4). We anticipate that secreted

(C) Transcript level of genes of the Rcr3/Pip1 locus of susceptible tomato plants (Rio Grande 76S) inoculated with Pseudomonas syringae pv. tomato DC3000 or

mock-inoculated plants. Expression data as RPKM were extracted from post-infection transcriptome data in [8].

(D) Label free quantification (LFQ) intensities indicate higher Pip1 than Rcr3 protein accumulation levels. Equal volumes of apoplastic proteomes from water- or

BTH-treated MM-Cf0 tomato plants were separated on protein gel, and the 20–30 kDa region was excised, treated with trypsin, and subjected to mass

spectrometry. ND, not detected.

(E) Neighbor-joining tree of the protease-encoding open reading frames of the Rcr3/Pip1 locus of potato, tomato, and pepper. Labels at the nodes indicate

bootstrap support.

(F) Pairwise comparison of the surface of the proteasemodel of tomato Rcr3 and Pip1 shown from the front and the back. Top: differences between Rcr3 and Pip1

of tomato were plotted onto a structural model of tomato Rcr3 and Pip1 modeled on the 1s4v crystal structure. Residues are indicated in colors as shown in the

legend. Bottom: differences reside on the surface of Rcr3/Pip1 outside the substrate-binding groove. Residues in the Rcr3 protein model were divided into

surface-exposed, internal, or substrate-binding grove using PyMol. The frequency of residues that are different, similar, or identical between Rcr3 and Pip1 in

tomato was counted for each of these three positions.

See Figure S1 for more information.

Figure 2. In the Absence of Cf-2, Rcr3 Con-

tributes to Resistance to P. infestans, but

Not to C. fulvum or to P. syringae

(A) Generation of tomato lines carrying Rcr3pim

(lines #A and #B) and rcr3-3pim (lines #C

and #D) in the absence of Cf-2 by crossing. The

occurrence of plants with necrotic phenotypes

due to the combination of Rcr3lyc with Cf-2 is

indicated.

(B) In the absence of Cf-2, Rcr3pim does not

significantly affect susceptibility to C. fulvum race

5. Tomato plants (lines #A, #C, and #D) were

spray inoculated with spores, and fungal growth

was measured at 8, 11, and 14 days post inocu-

lation (dpi) using qRT-PCR using primers for fungal

GAPDH and tomato Actin. Error bars represent

SEM (n = 15). The experiment was repeated three

times with similar results.

(C) In the absence of Cf-2, Rcr3pim does not

significantly affect susceptibility to P. syringae pv.

tomato DC3000 (PtoDC3000). Tomato plants (mix

of lines #A + #B and of #C + #D) were spray

inoculated with PtoDC3000, and bacterial growth in colony forming units (cfu) was measured at 0, 2, and 4 dpi. Error bars represent SEM (n = 3). The experiment

was repeated three times with similar results.

(D) In the absence ofCf-2,Rcr3pim contributes to resistance against P. infestans. Detached leaves fromMM-Cf0 carryingRcr3pim (mix of lines #A + #B) orMM-Cf0

carrying rcr3-3pim (mix of lines #C + #D) were droplet inoculated with spores ofP. infestans 88069, and the lesion areawasmeasured from pictures taken at 4, 5, 6,

and 8 days post-inoculation. Error bars represent SEM (n = 6–8). The experiment was repeated twice with similar results.
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proteases might have been employed early in evolution as a

component of an ancestral immune response (Figure 4A). Their

exclusive role in extracellular defense allowed these proteases

to target non-self proteins and become stress inducible, while

the secreted plant proteome may have been under selection

to prevent accidental processing. Second, pathogens have

adapted to this harmful proteolytic environment by secreting in-

hibitors that inactivate these defense proteases (Figure 4B).

Indeed, unrelated effector proteins (Avr2, EpiCs, and Vap1)

target secreted tomato proteases [2, 19, 29]. This process is

associated with the accumulation of variant residues on the sur-

face of Rcr3 and Pip1, some of which affect inhibitor affinity

[3, 29–31]. Next, gene duplication and diversification of the dupli-

cates occurred, probably driven by the arms racewith pathogen-

derived inhibitors (Figure 4C). Finally, a surface receptor (a Cf-2

progenitor) evolved that perceives protease-inhibitor complexes

and triggers immune responses (Figure 4D). This order implies

that Cf-2 is younger than Rcr3, and this is supported by the find-

ings that Cf gene clusters evolve fast by recombination [13, 14]

and Cf-2 itself evolved recently because its open reading frame

contains nearly identical nucleotide repeats [20].

Alternatively, a Cf-2 progenitor evolved first, before protease

gene duplication (Figure 4E). We anticipate that a single guarded

immune protease would be under opposite selection forces

Figure 3. Antisense Pip1 Tomato Plants Are

Hyper-susceptible to Pathogens

(A) A cDNA for Pip1, driven by the CaMV 35S

promoter in reverse orientation, was transformed

into MM-Cf0 plants, resulting in independent

transformant lines #E and #F.

(B) Reduced transcript levels in MM-Cf0/asPip1

tomato plants of Pip1, but not of Rcr3 or C14.

mRNA was isolated from two 2-week-old F2 MM-

Cf0/asPip1 tomato plants (line #E) or the recipient

MM-Cf0 control and used for qRT-PCR using

gene-specific primers. Transcript levels were

normalized against transcript levels of tomato

Actin, and the expression level of the untrans-

formed control plants was set to 100%. The error

bars represent the SE of nine biological replicates.

The experiment was repeated three times with

similar results. Similar results were obtained for

plants of line #F.

(C) Reduced Pip1 protein levels in MM-Cf0/asPip1

tomato plants. Apoplastic proteomes were iso-

lated from 4-week-old MM-Cf0 and two MM-Cf0/

asPip1 (line #E) tomato plants and analyzed on

protein blot using anti-Pip1 and anti-C14 anti-

bodies and Ponceau staining. Similar results were

obtained for plants of line #F.

(D) Reduced protease activity in MM-Cf0/asPip1

tomato plants. Equal volumes of apoplastic fluids

isolated from 4-week-old MM-Cf0 and two MM-

Cf0/asPip1 plants (line #E) and plants of lines #A

and #C were pre-incubated with or without 50 mM

E-64 and labeled with 1 mM MV201. Labeled pro-

teins were detected by fluorescence scanning.

Similar results were obtained for plants of line #F.

(E) MM-Cf0/asPip1 plants are hyper-susceptible

to C. fulvum. MM-Cf0 and MM-Cf0/asPip1 plants

of lines #E and #F having reduced Pip1 transcript

levels were spray inoculated with conidia of

C. fulvum race 5. Top: pictures of the lower side of

infected leaves are representative and were taken

at 14 dpi. Bottom: RNA was isolated at 8, 11, and

14 dpi and used for qRT-PCR using specific fungal

GAPDH and tomato Actin primers. Error bars

represent SEM (n = 15). The experiment was

repeated twice with similar results.

(F) MM-Cf0/asPip1 plants are more susceptible to P. syringae (PtoDC3000). Wild-type plants and MM-Cf0/asPip1 plants (mix of both lines #E and #F) having

reduced Pip1 transcript levels were spray inoculated with 108 PtoDC3000 bacteria/ml. Top: pictures of the upper side of infected leaves are representative and

were taken at 4 dpi. Bottom: bacterial populations were determined at 0, 2, and 4 dpi. Error bars represent SEM (n = 3). The experiment was repeated three times

with similar results.

(G) MM-Cf0/asPip1 tomato plants are hyper-susceptible to P. infestans. MM-Cf0 and MM-Cf0/asPip1 plants (line #E) having reduced Pip1 transcript levels were

droplet inoculatedwithP. infestans isolate 88069. Top: pictures of the lower side of infected leaves are representative andwere taken at 8 dpi under UV irradiation.

Bottom: lesion areas of three leaves of three plants were quantified at 4, 6, and 8 dpi using imaging software. Error bars represent SEM (n = 9). The experiment was

repeated three times with similar results.
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acting on both the level of protein-protein interactions and tran-

scriptional activity. Gene duplication would relax this evolu-

tionary constraint and allow the evolution of (1) a co-receptor

protease with reduced expression levels and increased affinity

for pathogen-derived inhibitors and (2) a defense-related prote-

ase that retained high expression levels and evolves avoiding in-

teractions with pathogen-derived inhibitors (Figure 4F). This sec-

ond evolutionary scenario cannot be excluded until we study the

history of functional Cf-2-like proteins in Solanaceae [32] in more

detail. These observations trigger further research into the evolu-

tion, molecular mechanism, and occurrence of this intriguing in-

direct pathogen recognition system in Solanaceous plants.
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