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SUMMARY Fungi and oomycetes are filamentous microorganisms that include a diver-
sity of highly developed pathogens of plants. These are sophisticated modulators of
plant processes that secrete an arsenal of effector proteins to target multiple host cell
compartments and enable parasitic infection. Genome sequencing revealed complex
catalogues of effectors of filamentous pathogens, with some species harboring
hundreds of effector genes. Although a large fraction of these effector genes en-
code secreted proteins with weak or no sequence similarity to known proteins,
structural studies have revealed unexpected similarities amid the diversity. This
article reviews progress in our understanding of effector structure and function
in light of these new insights. We conclude that there is emerging evidence for
multiple pathways of evolution of effectors of filamentous plant pathogens but
that some families have probably expanded from a common ancestor by duplica-
tion and diversification. Conserved folds, such as the oomycete WY and the fungal
MAX domains, are not predictive of the precise function of the effectors but serve as
a chassis to support protein structural integrity while providing enough plasticity for
the effectors to bind different host proteins and evolve unrelated activities inside
host cells. Further effector evolution and diversification arise via short linear motifs,
domain integration and duplications, and oligomerization.
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INTRODUCTION

Filamentous pathogens (fungi and oomycetes) are the causative agents of some of
the world’s most notorious plant diseases. Left unchecked, they can devastate crop

harvests, destroy managed and wild forests, affect the supply of ornamental plants, and
disturb natural ecosystems (1–3). Perhaps the most famous plant disease outbreak was
caused by the oomycete Phytophthora infestans, which spread to Europe and triggered
the 19th-century Irish potato famine (4). This pathogen remains relevant in agriculture
today, infecting potato and tomato crops throughout the world (5). Diseases caused by
fungal pathogens, such as rice and wheat blast and wheat stem and stripe rust, are of
immediate concern for global food security (1, 6, 7). Major factors in the ability of these
filamentous microbes to cause disease on their hosts are effectors, pathogen-encoded
proteins that are secreted to either the apoplast or specialized biotrophic interfaces
(both are spaces outside plant cells) or are translocated inside host cells (8–11).

Effectors act to modulate host cell physiology to promote susceptibility to patho-
gens. In turn, plants have evolved cell surface and intracellular receptors to detect the
presence of pathogen signatures and mount an immune response to restrict the
progression of disease. Cell surface receptors typically recognize microbe-associated
molecular patterns (MAMPs), derived from abundant structural components of mi-
crobes’ cell walls, or secreted proteins that function as virulence effectors. Intracellular
receptors respond to the presence of translocated effectors and/or their activity on host
cell targets. These intracellular receptors are nucleotide-binding domain- and leucine-
rich repeat-containing (NLR) proteins that mediate innate immunity to pathogens in
both plants and animals (recently reviewed in reference 12).

One of the defining features of effector proteins, be they of bacterial or filamentous
pathogen origin, is the lack of clear sequence similarity to proteins of known function.
This is thought to be the consequence of evolutionary pressure that drives the rapid
diversification of effector activities in host cells to optimize function and/or avoid
recognition by the innate immune system. The frequent difficulty in recognizing
common motifs that indicate the function or activity of effectors may be due to few of
them having enzymatic activity or the absence of known domains for direct interaction
with host factors. In addition, many effectors are small proteins of �15 kDa, and thus,
their rapid diversification would result in a loss of sequence similarity. With a few
notable exceptions (the RXLR motif of effectors in some oomycetes being the most
prominent), this sequence diversity has meant that it is challenging to confidently
produce catalogues of effectors from filamentous plant pathogen genomes despite
many of these now being available. In some cases, bioinformatic approaches have been
useful in predicting and classifying candidate effectors from filamentous plant patho-
gens (13–23) (Table 1). However, it can be challenging to pick the most relevant
proteins to select for further investigation from these lists. These bioinformatic ap-
proaches use some of the commonalities identified among effectors from different
organisms, such as genomic context, the presence of a secretion signal, the absence of
predicted transmembrane domains, expression patterns, and the lack of similarity to
known protein domains. Recent advances in the computational prediction of effectors
have employed machine-learning approaches, which are proving useful for prioritizing
effectors for further study (24). There are also examples of effectors of filamentous plant
pathogens that share common sequence motifs with known enzymes, enzyme inhib-
itors, sugar-binding proteins, and toxins, with some being shown to possess such
activities.

It is well established that protein structure is more conserved than amino acid
sequence, and in many cases, this is due to the evolutionary relationship between
structure and function (25). The fact that structural conservation can be a powerful
method for the functional annotation of proteins is a fundamental concept that has
driven the development of structure determination as a tool to understand the effector
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biology of both mammalian and plant pathogens (26, 27). In particular, this has been
important where the lack of sequence similarity to known functional proteins has
prevented the prediction of the molecular mechanism.

In this review, we focus on recent advances that highlight commonalities shared by
effectors of filamentous plant pathogens, focusing on functional similarities with
known proteins, on effectors that cluster into large structurally common but sequence-
divergent families comprising novel folds, or on those that share structural similarity
with proteins of known function. It is timely to review progress in this area in light of
new insights. We conclude that there is emerging evidence for multiple pathways of
evolution of effectors of filamentous plant pathogens, including that some families
appear to have evolved from a common ancestor by duplication and diversification in
the pathogen.

EFFECTORS OF FILAMENTOUS PLANT PATHOGENS THAT ENCODE ENZYMES
AND PROTEASE INHIBITORS

Structural studies of a number of bacterial plant-pathogenic type III secreted
effectors (T3SEs) have revealed similarity with proteins of known function, which
suggested both how these proteins act and experiments to test mechanisms (28–31).
Remarkably, many of these proteins appear to be enzymes with the potential to
catalyze a wide variety of different reactions, such as E3 ligation, ADP ribosylation, and
proteolysis. In several cases, specific enzymatic activities have been demonstrated for
these proteins (32). In contrast, a number of effectors of filamentous plant pathogens
have been predicted to have enzymatic activity, but only a few have had such activities
confirmed experimentally. To date, there are no structures of enzymes of effectors of
filamentous plant pathogens, so these predictions typically rely primarily on sequence
comparisons.

TABLE 1 Effectors of filamentous plant pathogens that have sequence similarities with enzymes or enzyme inhibitors

Effector class Hyphal pathogen Example(s) Reference(s)

Chorismate mutases Ustilago maydis Cmu1 45

Lipase effector Fusarium graminearum FGL1 112

Enzyme inhibitors
Protease inhibitors Cladosporium fulvum Avr2 41
Cystatin-like protease inhibitor domains Phytophthora infestans EPIC1, EPIC2B 42
Chitinase inhibitor Cladosporium fulvum Avr4 56

Proteases and peptidases
Proteases Zymoseptoria tritici (Mycosphaerella

graminicola)
33

Colletotrichum sp. 34
Secreted peptidases Zymoseptoria tritici (Mycosphaerella

graminicola)
Astacin (peptidase family M12A),

serine carboxypeptidase S28
113

Serine protease Fusarium oxysporum f. sp. lycopersici Sep1 35
Alkaline serine protease alp1 Sclerotinia sclerotiorum Peptidase inhibitor I9 23

Metalloproteases
Zinc metalloprotease Magnaporthe oryzae AVR-Pita (AVR2-YAMO) 36, 114
Deuterolysin metalloprotease Sclerotinia sclerotiorum Deuterolysin metalloprotease (M35)

family (PF02102) homolog of M.
oryzae AVR-Pita

23

Metalloprotease Fusarium oxysporum f. sp. lycopersici Mep1 35

Nudix hydrolases Phytophthora sojae Avr3b 46
Colletotrichum truncatum CtNUDIX 115
Melampsora lini AvrM14 48

Crinklers
Kinase activity Phytophthora infestans CRN8 50
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Proteases and Protease Inhibitors

Analyses of fungal genomes, including those of Zymoseptoria tritici (33), Colletotri-
chum sp. (34), and Sclerotinia sclerotiorum (23), identified families of secreted proteases
whose expression pattern supports a putative role as effectors, to promote the colo-
nization and growth of the pathogen. Fusarium oxysporum f. sp. lycopersicum secretes
a serine protease, Sep1, and a metalloprotease, Mep1, that act synergistically to cleave
host chitinases, preventing their activity in degrading fungal cell walls (35). A double
mutant of Sep1 and Mep1 showed reduced disease on tomato, highlighting the
importance of these proteins for full virulence.

The rice blast fungus Magnaporthe oryzae produces AVR-Pita, an effector with features
typical of zinc metalloproteases, including conserved residues known to mediate zinc
coordination and catalysis in homologues from other organisms (9, 36). However, to date,
actual protease activity for AVR-Pita has not been demonstrated.

A remarkable case is the glucanase inhibitor proteins (GIPs), which are proteins
secreted by Phytophthora spp. to inhibit the degradation of pathogen �-1,3/1,6-glucans
and the release of defense-eliciting oligosaccharides by host �-1,3-endoglucanases (37,
38). GIPs share significant sequence similarity with trypsin serine proteases but are
predicted to be proteolytically nonfunctional because they carry mutated catalytic
residues.

Interestingly, filamentous plant pathogens also secrete protease inhibitors, which
act on host pathogenesis-related proteases to prevent their activities. Examples include
EPI1 and EPI10 of P. infestans, which carry multiple domains with similarity to the Kazal
family of serine protease inhibitors (39, 40). In addition, the Avr2 effector of the fungal
pathogen Cladosporium fulvum (41) and the P. infestans effectors EPIC1 and EPIC2 (42)
are unrelated in sequence but have convergently evolved to target the same host
proteases (43, 44). The oomycete EPIC family of protease inhibitor effectors has
similarity to the widespread cystatin domain (42), whereas C. fulvum Avr2 is a small
cysteine-rich protein without any notable sequence similarity to other proteins (41).

Fungal Cmu1, an Enzyme Interfering with Metabolic Flux

The maize smut fungus Ustilago maydis translocates a chorismate mutase, Cmu1,
into plant cells. Cmu1 appears to benefit the pathogen by redirecting the metabolic
flux of chorismate away from the biosynthesis of salicylic acid, suppressing the accu-
mulation of this defense-related hormone during infection. Intriguingly, there is evi-
dence to suggest that Cmu1 can move out of infected cells into neighboring cells,
where the enzyme’s activity can “prime” the host tissue for infection (45).

Translocated Oomycete Effectors Include Enzymes

Oomycete plant pathogens encode putative enzymes in their effector repertoires.
Phytophthora species have �300 to 550 RXLR-type effectors that rarely have sequence
similarity to know enzyme folds. However, P. infestans and Phytophthora sojae contain
a sequence signature suggestive of Nudix hydrolase (phosphorylase) activity. The P.
sojae effector Avr3b has been shown to possess ADP-ribose/NADH pyrophosphorylase
activity when expressed and epitope purified from plant tissue (46). Furthermore, the
virulence activity of Avr3b was dependent on the conserved Nudix motif. Interestingly,
the activity of Avr3b as a Nudix hydrolase is dependent on its modification by plant
cyclophilins; when produced in Escherichia coli, the protein is not active (47). Recently,
a putative Nudix hydrolase effector (AvrM14) was identified in the flax rust fungus
Melampsora lini (48), but catalytic activity for this protein has yet to be shown.

In addition to RXLR effectors, Phytophthora species also contain hundreds of “Crinkler”
effectors (CRNs) (13, 16, 49). CRNs are modular proteins, some of which induce cell
death upon expression in plant cells (13, 16). One C-terminal CRN domain has signifi-
cant sequence similarity to protein Ser/Thr kinases of the RD (arginine-aspartate) class.
Indeed, P. infestans CRN8 was shown to be an active kinase present in an autophos-
phorylated state in plant cells (50). In planta expression of CRN8 enhanced the growth
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of P. infestans, and this required the intact RD motif, suggesting that the enzymatic
activity of this kinase is relevant for virulence.

EFFECTORS OF FILAMENTOUS PLANT PATHOGENS CAN SHARE FOLDS WITH
FUNCTIONALLY SIMILAR PROTEINS
Chitin-Binding LysM Effectors

Chitin is a major component of fungal cell walls, and the detection of this homopo-
lymer in the apoplast is used by plants as a strategy for initiating immune responses
(51). Plants detect chitin-derived oligosaccharides via cell surface receptors that contain
extracellular lysine motif (LysM) domains. Plant LysM domains comprise �50 amino
acids and adopt a ���� structural fold (52, 53) (Fig. 1). To protect themselves from
detection by the plant immune system, fungi use LysM effectors to sequester chitin
oligomers in the apoplast, outcompeting binding by host receptor domains. The crystal
structure of Cladosporium fulvum Ecp6 confirmed that this protein contained 3 modular
LysM domains (54) (Fig. 1 and Table 2). In a strategy to deliver high-affinity ligand
interactions, two of the Ecp6 LysM domains (LysM1 and LysM3) dimerize to “sandwich”
a chitin oligomer in a groove via multiple hydrogen bonds and hydrophobic interac-
tions (Fig. 1A). To date, this ligand-induced LysM dimerization to increase binding
affinity is unique to Ecp6 and highlights the propensity of pathogen effectors to adapt
protein folds to acquire new activities (51). Interestingly, the ligand-binding capability
of the LysM2 domain of Ecp6 was also shown to interfere with chitin-triggered
immunity in planta, but the underlying mechanistic basis remains unclear (55).

Multidomain LysM effectors are also found in other fungal plant pathogens, includ-
ing the wheat pathogen Zymoseptoria tritici and the rice blast pathogen Magnaporthe
oryzae, suggesting that they represent a widespread mechanism for the suppression of
detection by the plant immune system. However, unlike Ecp6, Z. tritici LysM effectors
protect fungal hyphae against hydrolysis by host chitinases, although the mechanism
by which they achieve this is not understood (55).

FIG 1 The crystal structure of the LysM effector Ecp6 shows how modularity can be used by effectors to
generate new functions (the three LysM domains are shown in red, blue, and lilac, respectively). (A) Two
Ecp6 LysM domains combine to bind to a chitin oligomer (shown in yellow). (B to D) Superposition of the
Ecp6 LysM domains on the plant (rice) LysM receptor protein MoCVNH3 (in gray) (LysM domains are
colored as described above). The amino (N) and carboxyl (C) termini of the proteins are labeled.
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CBM14-Like Avr4 Effectors

In a second strategy to evade chitin-mediated recognition by the plant immune
system, fungi can secrete effector proteins that bind to chitin in their cell wall and
prevent the action of host chitinases in generating chito-oligosaccharide fragments.
The Cladosporium fulvum effector Avr4 was predicted to adopt a carbohydrate-binding
module family 14 (CBM14)-like structure, based on its disulfide bond pattern, and in
vitro, Avr4 protects chitin from hydrolysis by plant chitinases (56, 57). CBM14 proteins
are defined as having chitin-binding activity, with one being characterized as having
antimicrobial properties (58). The structure of the CBM14 member tachycitin, from the
horseshoe crab Tachypleus tridentatus, revealed a distorted �-sandwich fold flanked by
short loops and turns, stabilized by disulfide bonds (59). Tachycitin was described as
sharing some structural similarity to a domain found in the plant chitin-binding protein
hevein (60).

Avr4 homologues are found in a number of plant-pathogenic fungal species.
Recently, the crystal structure of Avr4 from the tomato pathogen Pseudocercospora
fuligena confirmed that the Avr4 family of effectors adopts the CBM14-like fold (Fig. 2), and
this enabled the investigation of structure-function relationships in chitin binding by
these proteins (61). As predicted for tachycitin, the chitin-binding site of Avr4 is located
between two �-strands and the connecting �-hairpin and is mediated by aromatic
amino acids and adjacent polar residues (Fig. 2).

The evolutionary dynamics of CBM14 family proteins are complex (62). While chitin
binding is a critical feature of this fold for fungal defense against the plant immune
system, it is clear that other functions can be attributed to the wider family given that
CBM14 proteins occur in nonpathogenic species and were previously shown to have
antimicrobial properties.

NLPs

NLPs (necrosis- and ethylene-inducing peptide 1-like proteins) are a large family of
secreted proteins found in plant-associated fungi, oomycetes, and bacteria. NLPs were
initially characterized by their ability to induce necrotic cell death in dicotyledonous
plants (63), which is thought to be dependent on toxin-induced host cell damage (64).
However, it is now well established that not all NLPs share this activity (65, 66). Despite
this, both cytotoxic and noncytotoxic NLPs can trigger cell surface-dependent immune
responses in plant cells, and this activity has been localized to a 24-amino-acid peptide
(67, 68) recognized by a receptor complex comprising RLP23/SOBIR-1/BAK1 (69). Clues
to the mechanism of the cytolytic activity of NLPs came from the crystal structures of

FIG 2 CBM14 family structure of P. fuligena Avr4. The structures comprise an alpha helix (yellow) and five
beta strands (green). The residues predicted to be involved in the interaction with chitin are shown in
blue.
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NLPs from Pythium aphanidermatum and Moniliophthora perniciosa (Fig. 3), which
showed that this family of proteins shares a fold with the actinoporin pore-forming
toxin stichoysin (64, 70). However, there is no experimental evidence for pore-forming
activity by NLPs, and their toxicity may be the result of the NLP-induced release of
membrane damage factors that are then sensed by the plant (68). Interestingly, the
24-amino-acid peptide, which acts as a MAMP for the activation of plant immunity, is
largely buried within the core of the intact structure, with only a small number of
residues being displayed on the surface (67). This suggests that the protein is probably
unfolded and/or digested for recognition by the receptor.

THE THREE-DIMENSIONAL STRUCTURES OF EFFECTORS OF FILAMENTOUS
PLANT PATHOGENS SHOW CONSERVED FOLDS WITHIN FAMILIES
Oomycete Effectors and the WY Fold

The RXLR class of host-translocated oomycete effector proteins is defined by the
presence of a conserved N-terminal RXLR motif and a diverse C-terminal domain that
exerts effector activity inside the host cell (16, 71, 72). Analysis of the sequences of the
RXLR repertoires of Phytophthora sojae and Phytophthora ramorum identified conserved
motifs, which were named “W” (Trp), “Y” (Tyr), and “L” (Leu), after the single-letter amino
acid code for a highly conserved residue in each sequence (73). Protein structural
analysis subsequently revealed that the amino acids at the conserved W and Y positions
were buried in the hydrophobic core of a three-�-helical bundle and stacked against
one another in an energetically favorable interaction (74) (Fig. 4). Intriguingly, except
for the Hyaloperonospora arabidopsidis effector ATR13 (75), all of the structures of
oomycete RXLR effectors that have been determined to date adopt the “WY domain”
fold. Nonetheless, these proteins display significant primary sequence differences. They
also show diverse structural adaptations, including N- and C-terminal extensions, loop
regions, and domain duplication, that give rise to very different overall structures (74,
76–78) (Fig. 4). Hidden Markov model (HMM) sequence searches, based on the knowl-
edge of the WY domain structure, predicted that nearly half of the RXLR effector
complement of Phytophthora species would adopt this fold (74).

The structure of the P. infestans effector PexRD2 is comprised of five �-helices, three
of which contribute to the WY domain three-�-helical bundle (Fig. 4A). The additional
helices (present between two helices of the core WY domain) are instrumental in
forming an extensive homodimeric interface in the PexRD2 structure, consistent with
the observation that PexRD2 self-associates in planta. The structures of Phytophthora
capsici AVR3a4 and AVR3a11 comprise monomeric four-helical bundles (Fig. 4B), with
an N-terminal helical extension to the WY domain fold (74). It is possible that the

FIG 3 Crystal structures of the NLP family members NLPPya (A) and MpNEP2 (B), showing the central
�-sandwich surrounded by 3 helices. The conserved structural elements are shown in a cartoon
representation, with residues contributing to disulfide bridges shown as sticks (in yellow) and loops
shown in gray.
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N-terminal helix is important for maintaining the stability of monomeric, single-WY-
domain proteins, although this has not been explicitly tested.

The HMM-based sequence searches mentioned above revealed that these effectors
could also comprise tandemly repeated WY domains encoded by a single gene. The
first crystal structure of a tandem WY domain effector was that of ATR1 from Hyalo-
peronospora arabidopsidis (76) (Fig. 4C). In ATR1, two WY domains (each with an
N-terminal helical extension) are connected through an additional helix, which acts as
a linker. Recently, the crystal structure of PexRD54 revealed how five WY domains can
pack together in a stable structure with diverse domain-domain interactions (78) (Fig.
4D). Within each of these tandem WY domain structures, the individual domains can be
overlaid with high confidence despite limited sequence identity (76, 78). Interestingly,
PexRD54 employs a short linear motif known as the ATG8-interacting motif (AIM) to
engage a host protein and to exert its virulence activity (79). The AIM is presented at
the C terminus of PexRD54 and is linked to the last WY domain via a short helix. The
structure of PexRD54 suggests that one function of tandem WY domains is to serve as
a scaffold to present functional motifs for interaction with host proteins.

The WY domain fold serves as a chassis for the evolution of novel functions in
oomycete effectors while maintaining their structural integrity. The fold presents a
flexible platform that supports effector evolution and diversification via the acquisition
of short linear motifs, domain duplications, and dimerization. Thus, the WY domain
structure is not predictive of the precise function of the effectors but appears to provide
enough plasticity for the effectors to bind different host proteins and evolve unrelated
activities inside host cells.

MAX Effectors of Magnaporthe

Recently, a new family of effectors of filamentous plant pathogens has been
described, which also shares a conserved common structure but displays a diverse

FIG 4 The structures of oomycete WY domain effectors reveal how modularity and domain repeats give rise to
different overall structures. For each panel, the region of the protein comprising the WY domain fold is shown in
blue, and the residues at the W and Y positions are shown as sticks (green carbon atoms). Shown are PexRD2
(monomer) (A), Avr3a11 (Avr3a4 is essentially identical and not shown) (B), ATR1 (the region toward the N terminus
that does not form a WY domain is not shown) (C), and PexRD54 (D), with amino (N) and carboxyl (C) termini
labeled. Avr3a11/4 and ATR1 carry an additional N-terminal helix (pink). The tandem WY domains of ATR1 and
PexRD54 are separated by a helix (brown) in ATR1 and loops (yellow) in PexRD54. PexRD54 carries a short helix
(coral) at the C-terminal end prior to the ATG8-interacting motif (AIM) (not shown, as it was disordered in the
crystals). All structure figures were prepared with ccp4 mg (111).
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protein sequence. The Magnaporthe Avrs and ToxB-like (MAX) family was defined
following structural work on effectors from the fungal pathogen M. oryzae, the causal
agent of rice blast disease (80). Despite typically sharing less than 25% sequence
identity, each member of this family that has had a structure determined (80–84) shares
a characteristic six-stranded �-sandwich fold (Fig. 5). This fold is stabilized by at least
one disulfide bond, generally with Cys residues present in �1 and in, or immediately
before, �5. In most cases, one of the �-sheets is formed by strands �1, �2, and �6, and
the second is formed by strands �3, �4, and �5. The length and orientation of the
different structural elements are variable, in particular for strand �5 and for the various
connecting loops, giving rise to proteins with distinct shapes and surface properties
(80). In addition, the M. oryzae effector AVR-PikD contains an N-terminal extension to
the six-stranded �-sandwich structure (Fig. 5A), and this region contains polymorphic
residues that contribute to the evasion of recognition by the plant innate immune
system (82, 85). Interestingly, the M. oryzae effectors AVR-Pik, AVR-Pia, and AVR1-CO39
all bind to heavy metal-associated (HMA) domains that have been integrated in
intracellular plant immune receptors (NLRs) throughout evolution. This suggests that
the conserved MAX effector family fold is well suited to interact with such domains and
may suggest a putative virulence target in host cells for these effectors.

Intriguingly, the MAX effector family includes ToxB, a proteinaceous toxin from
the fungus Pyrenophora tritici-repentis (86). This toxin shares the common three-
dimensional structure of MAX effectors (Fig. 5E and F), but its mode of action is unclear,
and no interacting partner has been identified. However, the N-terminal region of ToxB
has been shown to be essential for activity, while both the central and C-terminal parts
are required for full activity (87), suggesting that the conserved structure is important

FIG 5 The structures of MAX effectors reveal the shared �-sandwich fold. The conserved �-strands are
shown in a cartoon representation for each protein, with residues contributing to disulfide bridges
shown as sticks (in yellow) and loops in gray. Shown are AVR-PikD (A), AVR1-CO39 (B), AVR-Pia (C),
AVR-Pizt (D), ToxB (E), and toxb (F), with amino (N) and carboxyl (C) termini labeled.
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for function. A naturally occurring nontoxic version of ToxB (toxb) shares 78% sequence
identity with the active protein. These proteins share essentially the same structure,
although toxb may overall be less stable than ToxB (81).

PSI-BLAST followed by HMM-based profile searches revealed that the majority of
MAX effectors are found in Magnaporthe species (80). However, a small number of hits
were detected in other fungal species such as Colletotrichum (80). Thus, the discovery
of the MAX effectors enables a more robust prediction of candidate effectors in these
fungal pathogens.

RALPH Effectors of Powdery Mildew

Nearly 500 candidate effectors of the barley powdery mildew fungus Blumeria
graminis f. sp. hordei were predicted from the genome sequence using bioinformatic
tools by searching for genes with characteristics of effectors, particularly those encod-
ing small secreted proteins. Many of these candidate effectors have been shown to be
expressed during infection (88–90).

To further characterize B. graminis candidate effectors, their sequences were sub-
jected to structural annotation using protein fold recognition methods. A subset of
these candidate effectors are predicted to have structural similarities with ribonucleases
and were named RALPHs (RNase-like proteins expressed in haustoria) (91). Although
confirmation that RALPHs adopt RNase-like folds awaits the determination of an
experimentally derived structure, it is intriguing that many B. graminis effectors may
share a structural scaffold with each other, a feature common in other families of
effectors of filamentous plant pathogens. In another parallel with the MAX effectors,
RALPHs have been predicted to contain a disulfide bond, with Cys residues being
largely conserved toward both the N terminus (contained within a “YxC” motif) and the
C terminus of the proteins.

Recently, data have emerged showing that RALPH effectors function as both viru-
lence and avirulence determinants in B. graminis-barley and -wheat interactions. Using
host-induced gene silencing, five RALPHs were shown to be involved in the formation
of haustoria (92, 93). AVRA1 and AVRA13 were shown to be required for disease
resistance in barley mediated by the powdery mildew resistance loci Mla1 and Mla13,
respectively (94), and AvrPm2 was recently cloned as the cognate effector of the wheat
Pm2 gene (95). Furthermore, the B. graminis f. sp. tritici effector SvrPm3a1/f1 (formerly
Bcg1vir) has been shown to suppress avirulence triggered by the interaction of effector
AvrPm3a2/f2 (svrPm3a1/f1, formerly Bcg1avr) with its receptor Pm3a/f (96, 97). As with
other host-translocated effectors, the ability of RALPHs to activate plant immune
responses may help explain the strong diversifying selection seen in these proteins.

STRUCTURES OF OTHER NOTABLE EFFECTORS OF FILAMENTOUS PLANT
PATHOGENS
Flax Rust Effectors Show Divergent Structures

Melampsora lini causes rust disease on crop plants such as flax and linseed. Genomic
analyses of M. lini predicted that this fungus has a large repertoire of putative effector
proteins (22). Unlike oomycete RXLR and CRN effectors, but similar to effectors from
other fungal species, no widely conserved sequence-based motifs have been identified
for flax rust effectors thus far. To date, six M. lini effector proteins have been validated
experimentally, based on their avirulence activity (AvrL567, AvrM, AvrP4, AvrP123,
AvrL2, and AvrM14) (48, 98–101). These effectors trigger specific immune responses
mediated by NLRs in the host cell. AvrL567, AvrM, and their cognate NLRs exhibit
polymorphisms giving rise to allelic variants of the effector and receptor with specific
recognition profiles (98, 102). For example, AvrL567-A is recognized by the NLRs L5 and
L6, whereas AvrL567-D is recognized by L6 but not L5.

Crystal structures of the AvrL567 alleles AvrL567-D and AvrL567-A revealed that the
two proteins share the same architecture, adopting a �-sandwich fold comprising
seven antiparallel �-strands (Fig. 6A). Interestingly, the structures share some homology
with ToxA (103), a host-selective toxin of Pyrenophora tritici-repentis which induces cell
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death in sensitive wheat cultivars. ToxA was described as having a distant relationship
with mammalian fibronectin proteins, and an Arg-Glu-Asp (RGD) motif was found in a
loop region of the protein that may mediate interactions with plant cell integrin-like
receptors (103). This motif was subsequently shown to be required for protein inter-
nalization (104), although the precise mechanism remains unclear. AvrL567 lacks the
RGD motif, implying that it is internalized by a different mechanism. Both AvrL567-D
and -A display two positively charged patches on the protein surface and have been
shown to bind nucleic acid in vitro (105). However, the biological relevance of nucleic
acid binding remains unknown. Structure-led mutagenesis revealed that multiple
contacts mediate the interaction between AvrL567 alleles and their cognate receptors
(105).

Crystal structures of C-terminal domains of two allelic variants of AvrM (AvrM-A and
avrM) revealed an L-shaped �-helical fold comprising two helical repeats (106) (Fig. 6B).
The structural repeat, another example of modularity in effectors of filamentous plant
pathogens, was not evident from sequence analysis and was revealed only after the
structure was determined.

AvrLm4-7, a Lone Effector Structure with a Novel Fold

AvrLm4-7 is a Cys-rich protein that is recognized by oilseed rape cultivars harboring
Rlm4 and Rlm7 resistances (107). The loss of AvrLm4-7 in the pathogen strongly
impacts pathogen fitness (108, 109). The crystal structure of AvrLm4-7 does not share
significant homology with other structures in the Protein Data Bank, and as such, it has
proven challenging to infer putative protein function (110). The crystal structure
identified the positions of the four disulfide bonds in the protein, which, as for other
effectors, are probably involved in stabilizing the structure. In addition, a strongly
positive patch was identified on the protein surface, which may represent a functionally
relevant surface of the protein, although it has not been possible to show that this
region binds a negatively charged ligand. A single amino acid polymorphism that
perturbs the recognition of the effector by Rlm4 is located on a loop of the protein,
exposed to the surface. It is therefore unlikely that this polymorphism affects the overall
structure of the protein, but it may be important for a specific recognition site.

CONCLUSION

The high complexity of the secretomes of filamentous plant pathogens points to a
multitude of independent evolutionary pathways to generate effector proteins that
target a diversity of host molecules and processes. However, despite this extraordinary
sequence diversity, it is now evident that some conserved protein folds, such as the WY

FIG 6 Divergent structures obtained for flax rust effectors. (A) Cartoon representation of AvrL567-A (the D allele is
essentially identical and not shown), showing the �-sandwich fold. (B) Cartoon diagram of avrM, where the helical
repeats, which have some resemblance to the oomycete WY domain fold, are shown in blue and separated by a loop
(red). The amino (N) and carboxyl (C) termini of the proteins are labeled.
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and MAX domains, define widespread families of effector proteins that occur across
different plant pathogen taxa. There are both practical and theoretical implications of
this finding. Structure-guided sequence similarity searches enable more precise and
sensitive annotation of effector catalogues, notably of fungal effectors, which have
proven more difficult to annotate than their oomycete counterparts. This should enable
prioritization of effectors for further study, thus accelerating their functional character-
ization. In addition, the conserved structures provide a framework to unravel how the
rapid evolution of effector proteins has resulted in new host targeting activities and
tease out the physical and physiological constraints that these proteins face. In this
regard, the next phase of research should go beyond the analyses of individual
structures of effectors of individual filamentous pathogens and consider the structures
of effectors in complex with host proteins (78, 82). In the future, we need to further
improve our understanding of the biophysical properties of effector-host protein
complexes to gain comprehensive knowledge of effector structures and functions.
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