
29

Paul Birch et al. (eds.), Plant-Pathogen Interactions: Methods and Protocols, Methods in Molecular Biology,
vol. 1127, DOI 10.1007/978-1-62703-986-4_3, © Springer Science+Business Media New York 2014

 Chapter 3

 Two-Dimensional Data Binning for the Analysis
of Genome Architecture in Filamentous
Plant Pathogens and Other Eukaryotes

 Diane G. O. Saunders , Joe Win , Sophien Kamoun , and Sylvain Raffaele

 Abstract

 Genome architecture often refl ects an organism’s lifestyle and can therefore provide insights into gene
function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, charac-
teristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these
pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and
investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe
a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis
and visualization of whole genome architecture. The method is fl exible, combining whole genome archi-
tecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis
of specifi c values associated with genes such as gene expression and sequence polymorphisms, according to
genome architecture. This method enables the investigation of whole genome architecture and reveals
local properties of genomic neighborhoods in a clear and concise manner.

 Key words Genome architecture , Data binning , Intergenic , R , Visualization , Heatmap , Effectors ,
 Filamentous plant pathogen

1 Introduction

 Comparative genomic analyses have revealed that evolutionary
constraints often disparately affect coding, regulatory, and non-
coding sequences. In addition, the distribution of these constraints
largely depends on the relative position of genetic elements in the
genome, referred to as the “genome architecture” [1]. In eukary-
otic genomes, the organization of genes and genomic neighbor-
hoods has evolved to ensure accurate regulation of gene expression
and splicing. However, the plasticity of their structure can exceed
that of their sequence, leading to structural re-arrangements over
short evolutionary scales whereas genetic sequences, which are
under strong constraints, diverge only minimally. The evolution of
genome architecture is largely driven by genetic drift, but is also

30

constrained by lifestyles and specifi c biological contexts [1].
Therefore, studies of genome architecture and its evolution can
provide signifi cant insight into gene regulation and function, and
the underlying molecular bases of adaptation.

 The recent generation of genomic data for plant pathogenic
fungi and oomycetes has revealed an expansion in genome size in
several unrelated lineages [2 – 4]. For example, in the late blight
oomycete pathogen Phytophthora infestans , a repeat-driven expan-
sion of the genome has created repeat-rich, gene-sparse regions
that are distinct from the gene-dense conserved regions [2]. For
every gene, the distance to its closest gene neighbors in either
direction, designated as its fl anking intergenic regions (FIRs), can
be used to determine whether a gene resides in a gene-dense or
gene-sparse environment. A dramatic enrichment in genes associ-
ated with virulence is observed in P. infestans repeat-rich, gene-
sparse regions, [2 , 5]. Accordingly, most P. infestans effector genes
have longer FIRs than the genome average [6 , 7]. Although less
striking than P. infestans , repeat-rich genomic niches harboring
pathogenicity-related genes are also found in several other fi lamen-
tous plant pathogens, including Magnaporthe oryzae telomeric
regions, Leptosphaeria maculans AT-rich isochores, and Fusarium
spp. conditionally dispensable chromosomes [8]. Genes encoding
 Vir antigens in the malaria parasite Plasmodium falciparum reside
in repeat-rich regions of the genome suggesting that some animal
eukaryotic parasites have also evolved repeat-rich regions that host
pathogenicity-associated genes [9].

 Given that genes associated with pathogenicity tend to have
long FIRs in some pathogen genomes, genome architecture can,
in some cases, be used to identify new candidate pathogenicity
genes. For example, the oomycete pathogen Pythium ultimum
lacks a key family of oomycete effectors, known as “RXLR-type”
effectors that contain a conserved Arginine-X-Leucine-Arginine
N-terminal motif involved in translocation into host cells [10 ,
 11]. Analysis of the architecture of the P. ultimum genome com-
bined with Markov clustering resulted in the identifi cation of a
novel family of the candidate effector genes encoding small-
secreted proteins with a conserved N-terminal domain. This
domain contains a YXSL[RK] motif strongly enriched in secreted
proteins and typically located between amino acid 60 and 80,
similar to the RXLR motif [10 , 11]. This example clearly illus-
trates how examining genome architecture can help to reveal
novel effector candidates.

 Analysis of genome architecture through the visualization of
the length and distribution of intergenic regions is one way to gain
insights into the biology and evolution of eukaryotes. Eukaryotic
genomes are typically comprised of between 5,000 and 50,000
genes, each fl anked by two intergenic regions (5′ and 3′ FIRs). To
facilitate the mathematical analysis of such large datasets,

Diane G.O. Saunders et al.

31

 “quantization,” the process of mapping a large set of input values
onto a smaller set, is often used. Data binning is a quantization
method, replacing values that fall within a given interval (called a
“bin”) by a value representative of this interval, thereby reducing
the number of values to analyze.

 Here we report a method that was developed using two-
dimensional data binning to visualize both the 5′ and 3′ inter-
genic regions on either side of each gene in a single representation.
In this approach, genes are sorted into bins that are defi ned
fi rstly by the length of the 5′ intergenic regions (fi rst dimension)
and secondly by the length of 3′ intergenic regions (second
dimension). In the simplest implementation of the method, the
representative value of a bin is the number of genes it contains.
This is represented by a color code in a heatmap or as a third
dimensional value in a surface plot, providing a view of gene-
density distribution [2 , 12]. Using this method the genome
architecture for a whole genome can also be compared to a
smaller dataset, such as the length of intergenic regions for a
small subset of genes. Indeed, the method described here offers
the opportunity to overlay a scatter plot of a particular subset of
genes on the whole genome heatmap, thereby highlighting the
position of selected genes in the genome architecture. This
approach was used to compare the FIRs of effector genes to the
architecture of whole genomes in Phytophthora spp., illustrating
that effector genes preferentially reside in gene- sparse regions of
these genomes [2 , 5 – 7].

 Data binning is also used as a pre-processing technique to
accelerate analyses and reduce the bias caused by minor observa-
tion errors in metagenomics [13], mass spectrometry imaging
[14], and modeling [15]. In comparative genomics, data binning
has proved useful in revealing local properties of genomic neigh-
borhoods. Values describing gene properties can be associated
with every gene and processed per bin, providing a representative
value for genes in the same bin that have FIRs of similar length.
Using in planta expression data as an associated value, P. infestans
gene-sparse regions were shown to be enriched in transcriptionally
induced genes during plant infection [16]. Analyses of the fre-
quency and the type of single nucleotide polymorphisms and gene
copy number as associated values led to the concept of a “two-
speed genome,” with gene-sparse regions evolving faster than
gene-dense regions in the P. infestans lineage [16].

 We describe here a method to perform two-dimensional bin-
ning of genes based on the length of their FIRs, overlay a scatter
plot over the resulting heatmap graph, and analyze the distribu-
tion of gene-associated values such as gene expression and
sequence polymorphisms, according to genome architecture.
The method, implemented in R, takes standard gff or gtf coordi-
nate fi les as input and produces datasets and graphics that can be

Visualisation of Genome Architecture

32

exported in any format handled by R. It is composed of fi ve major
sections (Fig. 1):

 1. Calculation of FIRs length based on gff/gtf input.
 2. Determination of optimal bins based on quantiles and expo-

nential regression.
 3. Data binning.
 4. Representation of binned data as a heatmap graph.
 5. Optional: Overlay of a scatter plot representing FIRs for a

subset of genes.

GFF or GTF file
(Note 3)

Table of FIRs
(“FIRdata”)

3.1

“MyFIRs.csv”
CSV file Note 4

Bin breaks
(“BinLimits”)

3.2

Data matrix
(“GenValMatrix”)

Gene-associated
value (e.g. expression,

number of SNPs,...)

Note 7

Operation on
gene-associated values
(e.g. sum, average,...)

Note 8 3.3

Heatmap graphic
representation
(Figures 2 & 5)

3D graphics
representation

(Figure 6)

Note 9

Overlay scatter
plot (Figure 3)

Import FIR data
for display as a

scatter plot

3.4

3.5

Input

Output

Optional step

Required step

Note 1

Scatter plot
background image
(“image_name”)

Note 11

Note 12

“MyBins.txt”
TXT fileNote 6

“MyMatrix.csv”
CSV fileNote 9

 Fig. 1 Overview of the method showing required and optional analysis steps. Numbers refer to Subheadings 3
and 4 . The core of the method is shown in a gray box , with optional inputs (green) and outputs (red) connected
with dotted arrows

Diane G.O. Saunders et al.

33

 Intermediary output fi les can be exported or imported at each
major step of the analysis, as explained in the corresponding notes
and outlined in Fig. 1 .

 The shape of genome architecture heatmaps is largely depen-
dent on the choice of the bin size. If a bin size is too large local
variations in genome environment are collapsed. Conversely, if a
bin size is too small gene frequencies fl uctuate greatly and patterns
of genome architecture cannot be distinguished. In many eukary-
otic genomes, the length of intergenic regions in a genome roughly
follows a Gaussian distribution. Considering the form of Gaussian
functions, we approximated that the length of intergenic regions
varies proportionally to the logarithm of gene frequencies. To fi t
with this property, the proposed method determines bins of size
increasing exponentially.

 For global analysis of genome architecture, section fi ve can be
disregarded. The methods for data binning (Subheading 3.3) and
 Notes 7 and 8 describe how to associate values with genes, provid-
ing the opportunity to analyze the distribution of these values
according to genome architecture. In the following command
lines, parameters to be set by the user are underlined. All com-
mands should run if typed in or copied in the R console as shown,
omitting the initial “> ” prompt. Long command lines are split
across lines for clarity reasons, and should run if typed in as a single
line or copied in the R console as a whole (omitting the initial
“> ”).

2 Materials

 1. The following R base packages are required: “base,” “graphics,”
“grDevices,” “stats,” “utils,” installed by default with
R.2.XX.X. We recommend running R 3.0.1 or above for better
compatibility.

 2. Three packages from the bioconductor suite are needed, and
they can be downloaded and installed with the following
instructions:
 > source(" http://bioconductor.org/biocLite.R ")
 > biocLite("GenomicRanges")
 > biocLite("rtracklayer")
 > biocLite("Rsamtools")

 3. Four packages hosted by the CRAN mirror sites can be
downloaded directly using the “install.packages” function as
follows:
 > install.packages("png")
 > install.packages("gridExtra")
 > install.packages("ggplot2")

2.1 Required R
Packages

Visualisation of Genome Architecture

http://bioconductor.org/biocLite.R

34

 1. The methods use the function “getFeat2” or “getFeat2b”, mod-
ifi ed versions of the “getFeat” function contributed by Thomas
Girke. The codes of the “getFeat2” and “getFeat2b” functions
can be downloaded from the Figshare repository using the links
 http://dx.doi.org/10.6084/m9.fi gshare.707325 and http://
dx.doi.org/10.6084/m9.fi gshare.707326 respectively.

 2. The methods use the function “fi lled.contour3” that can be down-
loaded using the link http://dx.doi.org/10.6084/m9.fi g-
share.707327 to the Figshare repository. This is a modifi ed version
of the “fi lled.contour” function contributed by Ian Taylor, Carey
McGilliard, and Bridget Ferris available at http://wiki.cbr.wash-
ington.edu/qerm/sites/qerm/images/1/16/Filled.contour3.R .

 1. Alternative methods proposed in Subheading 4 use the “fi elds”
and “rgl” packages hosted by the CRAN mirror sites and
“EBImage” bioconductor package. They can be installed using
the following instructions:
 > install.packages("fi elds")
 > install.packages("rgl")
 > source(" http://bioconductor.org/biocLite.R ")
 > biocLite("EBImage")

 The description of methods in Subheadings 3 and 4 was performed
on P. infestans datasets described in [2]. Pre-processed fi les, as used
in the following Subheading 3 , can be downloaded from the
Figshare repository using the link http://dx.doi.org/10.6084/
m9.fi gshare.707329 . This archive includes:

 1. The “Mygtf.gtf” fi le containing the fi nal transcript calls for P.
infestans genome version 2.4. The original fi le is available at
 http://www.broadinstitute.org/annotation/genome/phy-
tophthora_infestans/MultiDownloads.html . The fi le “Mygtf.
gtf” imported in step 3 of Subheading 3.1 is a modifi ed ver-
sion in which lines were sorted in ascending order on the seq-
name and start position columns according to Note 3 .

 2. The “RXLR_FIRs.csv” fi le containing intergenic regions
length for RXLR effector genes only, imported in step 10 of
Subheading 3.5 .

 3. The “Tom_expression.csv” fi le containing gene induction val-
ues at 2 days post inoculation on tomato, imported in Note 7 .

3 Methods

 The following methods describe the procedure to draw genome
architecture heatmaps and overlay them with scatter plots in R. An
alternative method for calculating intergenic region length
(Subheading 3.1) in perl is proposed in Note 1 .

2.2 Required Custom
R Functions

2.3 Optional R
Packages

2.4 Sample Datasets

Diane G.O. Saunders et al.

http://dx.doi.org/10.6084/m9.figshare.707325
http://dx.doi.org/10.6084/m9.figshare.707326
http://dx.doi.org/10.6084/m9.figshare.707326
http://dx.doi.org/10.6084/m9.figshare.707327
http://dx.doi.org/10.6084/m9.figshare.707327
http://wiki.cbr.washington.edu/qerm/sites/qerm/images/1/16/Filled.contour3.R
http://wiki.cbr.washington.edu/qerm/sites/qerm/images/1/16/Filled.contour3.R
http://bioconductor.org/biocLite.R#_blank
http://dx.doi.org/10.6084/m9.figshare.707329
http://dx.doi.org/10.6084/m9.figshare.707329
http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/MultiDownloads.html
http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/MultiDownloads.html

35

 1. Copy the fi le “getFeat2.R” into your R working directory.
Specify the use of this fi le as the source for the “getFeat2”
function as follows:
 > source("getFeat2.R")
 You may want to ignore genes at the ends of contigs in the
analysis. In this case the “getFeat2b” function should be used
instead of “getFeat2”. See Note 2 for details on how to use it.

 2. Load libraries required for this section.
 > library(rtracklayer)
 > library(GenomicRanges)
 > library(Rsamtools)

 3. Place a copy of the .gff fi le containing feature coordinates for the
genome to analyze in your R working directory. Files in the .gff or
.gtf format are accepted as input. They must contain either “gene,”
“exon” or “start codon,” and “stop codon” features for the “get-
Feat2” function to work (see Note 3). Import the gff fi le using the
“import.gff” function of the GenomicRanges package, replacing
“Mygtf.gtf” by the name and extension of the fi le to analyze.
 > gff<- import.gff(" Mygtf.gtf ", asRangedData
=FALSE)

 4. Generate a Range object called “gffgene” containing gene fea-
tures using the “getFeat2” function. Specify the type of the fi le
imported (“gff” or “gtf”) after the “format=” parameter.
 > gffgene<-getFeat2(x=gff, format=" gtf ",
range_types=c("gene"))

 5. Restore the gene strand information lost after processing using
the “getFeat2” function.
 > strand(gffgene)<-mcols(gffgene)$score

 6. Clean up the temporary strand information column.
 > mcols(gffgene)$score<-NULL

 7. Generate a Range object called “gffi ntg” containing intergenic
region features using the “getFeat2” function. Specify the type
of the fi le imported (“gff” or “gtf”) after the “format=” param-
eter. This operation can take some time to complete.
 > gffi ntg<-getFeat2(x=gff, format=" gtf ",

 range_types=c("intergenic"))
 8. Create a data frame object called “length_intg” containing one

column with intergenic regions indexes and another column
with intergenic regions length.
 > length_intg<-

 as.data.frame(cbind(seq(1:length(ranges(gffi
ntg))), as.numeric(mcols(gffi ntg)$length)))

 9. Rename columns of the “length_intg” data frame as “index”
and “length” for convenience in future references.

3.1 Calculation of
Flanking Intergenic
Regions

Visualisation of Genome Architecture

36

 > colnames(length_intg)<-c("index", "length")
 10. Create a list called “three_intg_index” of indexes for intergenic

regions following every gene (located at the 3′ end of each
gene), using the “precede” function of the GenomicRanges
package.
 > three_intg_index<-precede(gffgene, gffi ntg)

 11. Create a list called “fi ve_intg_index” of indexes for intergenic
regions preceding every gene (located at the 5′ end of each gene),
using the “follow” function of the GenomicRanges package.
 > fi ve_intg_index<-follow(gffgene, gffi ntg)

 12. Create a data frame object called “gene_data” containing col-
umns with gene identifi ers, gene strand, fi ve prime, and three
prime intergenic region indexes.
 > gene_data<-

 as.data.frame(cbind(as.character(mcols(gffg
ene)$group), as.character(strand(gffgene)),
as.numeric(fi ve_intg_index), as.numeric
(three_intg_index)))

 13. Rename columns of the “gene_data” data frame as “geneid,”
“strand,” “FivePrime_index,” and “ThreePrime_index” for
convenience in future references.
 > colnames(gene_data)<-c("geneid", "strand",
"FivePrime_index", "ThreePrime_index")

 14. Merge “gene_data” and “length_intg” data frames into a
“tempdata” data frame using indexes for fi ve prime intergenic
regions as a common data column between the two data
frames. The “all.x=TRUE” parameter allows lines of the
“gene_data” data frame to be kept with no fi ve prime inter-
genic region index.
 > tempdata<-merge(x=gene_data, y=length_intg,

 by.x="FivePrime_index", by.y="index",
all.x=TRUE)

 15. Rename columns of the “temp_data” data frame as “delete1”,
“geneid”, “strand”, “ThreePrime_index,” and “fi veprime” to
avoid confl icts with the following steps of the process.
 > colnames(tempdata)<-c("delete1", "geneid",
"strand", "ThreePrime_index", "fi veprime")

 16. Merge “tempdata” and “length_intg” data frames into a
“FIRdata” data frame using indexes for three prime intergenic
regions as a common data column between the two data frames.
The “all.x=TRUE” parameter allows lines of the “gene_data”
data frame to be kept with no three prime intergenic region index.
 > FIRdata<-merge(x=tempdata, y=length_intg,

 by.x="ThreePrime_index", by.y="index",
all.x=TRUE)

Diane G.O. Saunders et al.

37

 17. Clean up unnecessary columns in the “FIRdata” data frame
object.
 > FIRdata$ThreePrime_index<-NULL
 > FIRdata$delete1<-NULL

 18. Rename columns of the “FIRdata” data frame as “geneid,”
“strand,” “fi veprime,” and “threeprime” for convenience in
future references. The FIRdata table can be exported for exter-
nal use (see Note 4).
 > colnames(FIRdata)<-

 c("geneid", "strand", "fi veprime", "threeprime")

 1. Set the number of bins to use by replacing “40” in the code
line below. This number is stored under the variable name
“NumBins.” We recommend values between 10 and 60 for an
appropriate representation of most eukaryotic genomes.
 > NumBins= 40

 2. The size and breaks of bins will be calculated based either on fi ve
prime or three prime intergenic regions length, depending on
which list contains the longest intergenic region of the genome.
The corresponding list is stored under the variable name “FIR2Bin”
 > if ((max(FIRdata$fi veprime, na.rm=TRUE)>max
(FIRdata$threeprime, na.rm=TRUE)) == TRUE)
{
 FIR2Bin<-FIRdata$fi veprime
 } else {
 FIR2Bin<-FIRdata$threeprime
 }

 3. Remove intergenic regions of length 0 or with no length
assigned from the “FIR2Bin” list.
 > FIR2Bin=FIR2Bin[which(FIR2Bin!=0)]
 > FIR2Bin<-na.omit(FIR2Bin)

 4. Determine the number of entries “BinSteps” per bin to sepa-
rate all entries in the “FIR2Bin” list into a number of quantiles
equal to “Numbins-1”
 > BinSteps<-round(length(FIR2Bin)/(Num Bins-1),
digits=0)

 5. Sort the length of intergenic regions stored in the “FIR2Bin”
list in ascending order; store the ordered list under the variable
name “FIR2BinOrd”.
 > FIR2BinOrd<-sort(FIR2Bin)

 6. Determine the temporary bin breaks stored based on inter-
genic region lengths, the position of which delimits quantiles
of length “BinSteps.” The list of temporary bin breaks is stored
under the list named “TempBinLimits.”
 > TempBinLimits<-FIR2BinOrd[seq(FIR2BinOrd[2*
BinSteps],

 length(FIR2BinOrd),BinSteps)]

3.2 Bin Breaks Setup

Visualisation of Genome Architecture

38

 7. To allow a more complete coverage of the range of intergenic
region length present in the genome analyze, the maximum
value in the list “FIR2Bin” is added as the last break in the list
“TempBinLimit”.
 > TempBinLimits[length(TempBinLimits)+1]<-

 max(FIR2Bin, na.rm=TRUE)
 8. Fit an exponential distribution to the values of temporary bin

breaks in “TemBinLimits” list using the non-linear regression
function “nls.” A prevalent weight is given to the extreme val-
ues in the “TempBinLimits” list during the regression to
ensure a better representation of genes with extreme intergenic
region length (see Note 5).
 > x<-seq(length(TempBinLimits))
 > fi t<-nls(log(TempBinLimits) ~ a*x + b, start
= c(a=0, b=0),

 algorithm='port',weights=((x-0.5
* NumBins)^2))

 9. Calculates the predicted bin breaks based on the exponential
regression and store values in the “BinLimits” list.
 > pred=predict(fi t, x)
 > BinLimits=c(1, round(exp(pred),0), max(FIR2Bin))

 Comparisons of the architecture of several genomes, using
the same set of bin breaks might be required. Note 6 describes
how to export the list of bin breaks calculated here and how to
import an external list of bin breaks.

 1. Assign fi ve prime and three prime intergenic regions of every
gene to bins delimited by breaks in the “BinLimits” list. Assigned
bins are stored under variables called “xbin” and “ybin” for fi ve
prime and three prime intergenic regions, respectively.
 > xbin=cut(FIRdata$fi veprime, breaks= c(BinLimits))
 > ybin=cut(FIRdata$threeprime, breaks= c(BinLimits))

 2. Concatenate the list of assigned bins to the “FIRdata” data
frame. This step also concatenates a list of gene-associated values
called “genevalue” that is set to “1” for every gene. A custom list
of gene-associated values can be provided instead (see Note 7).
 > FIRdata<-cbind(FIRdata, xbin, ybin,

 genevalue=rep(1, length (FIRdata$fi veprime)))
 3. Create the matrix “GenValMatrix” containing the number of

genes in each bin. The number of genes is calculated by sum-
ming up gene-associated values of 1 for each gene, using the
function “sum.” Other operations can be performed on gene-
associated values using different built-in or custom functions
(see Note 8). Note 9 describes how to export the matrix calcu-
lated here or how to import an external matrix of values.

3.3 Data Binning

Diane G.O. Saunders et al.

39

 > GenValMatrix<-with(FIRdata, tapply(genevalue,
list(xbin, ybin), sum))

 1. Set units of the graph axes in the three dimensions using the
number of columns in “GenValMatrix”, the number of rows in
“GenValMatrix,” and the maximum value in “GenValMatrix”
for x , y , and z dimensions, respectively.

 > x<-1:ncol(GenValMatrix)
 > y<-1:nrow(GenValMatrix)
 > zlim = range(as.numeric (unlist(GenVal
Matrix)) , fi nite=TRUE)

 2. Set the color palette “mypalette” using the “colorRampPal-
ette” function. The number and identifi ers of colors can be
freely chosen to modify the aspect of the heatmap, by changing
the list proposed below.
 > mypalette<-colorRampPalette(c("white",
"darkblue", "forestgreen", "goldenrod1",
"orangered", "red3", "darkred"), space="rgb")

 3. Create a list of colors “mycol” based on the “mypalette” color
palette and the number of subdivisions “mynlevels.”
 > mycol=mypalette(2*max(GenValMatrix, na.rm=TRUE))

 4. Create a list of labels “mylabels” for axes by concatenating the
length of the shortest and longest intergenic regions in each
bin (stored in the “BinLimits” list) separated by a hyphen.
 > mylabels<-paste(BinLimits[1:length(BinLim
its)-1], BinLimits[2:length(BinLimits)], sep="
- ", collapse=NULL)

 5. Perform heatmap graph rendering using the “fi lled.contour”
function (Fig. 2). 3D rendering of the “GenValMatrix” matrix
is also possible (see Note 10).
 > fi lled.contour(x, y, z=GenValMatrix,

 plot.title = title(main =" Phytophthora infestans
genome ",

 xlab = "fi ve prime intergenic regions",
 ylab = "three prime intergenic regions",
 cex.main=0.8, cex.lab=0.5),
 key.title = title(main ="Number of
genes", cex.main=0.5,

 line=1),
 col=mycol,
 levels = pretty(zlim, 2*max(GenValMatrix,

na.rm=TRUE)),
 plot.axes={axis(1,at=x, labels=mylabels, las=2,

 cex.axis=0.5);
 axis(2,at=y, labels=mylabels,

cex.axis=0.5)})

3.4 Heatmap
Drawing

Visualisation of Genome Architecture

40

 1. Copy the code of the “fi lled.contour3” function given in
Subheading 2 into a text fi le named “fi lled.contour3.R” and
place this fi le in your R working directory. Specify the use of
this fi le as the source for the “fi lled.contour3” function as
follows:
 > source('fi lled.contour3.R')

 2. Load libraries required for this section.
 > library(png)
 > library(gridExtra)
 > library(ggplot2)

 3. See Note 11 if you want to re-use a scatter plot background
image generated from a previous analysis. Automatically set the
name of the heatmap image fi le to be used as a background for
the scatter plot. The name is composed of the system date
(year, month, and day) and time (hours, minutes, seconds)

3.5 Overlaying a
Scatter Plot Over a
Genome Architecture
Heatmap

Phytophthora infestans genome

Five prime intergenic regions

T
h

re
e

p
ri

m
e

in
te

rg
en

ic
 r

eg
io

n
s

Number of
genes in bins

 Fig. 2 The heatmap plot output of step 5 of Subheading 3.4 , representing gene counts in P. infestans genome.
The initial gtf fi le was obtained at http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/
MultiDownloads.html . Minor edits were performed in Adobe Illustrator to include italic fonts in the main title
and improve the legibility of the color key and axis labels

Diane G.O. Saunders et al.

http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/MultiDownloads.html
http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/MultiDownloads.html

41

 followed by “_graph” and stored in the variable “image_name”
for future reference.
 > image_name<-paste(as.character(format(Sys.time(),

 "%Y%m%d%H%M%S")), "_graph", sep="")
 4. Create a .png image fi le in your R working directory named

after the “image_name” variable. For alternative image fi le for-
mats see Note 12 .
 > png(fi lename = paste(image_name, ".png", sep=""))

 5. Remove margins of the graph so that it fully covers the back-
ground of the scatter plot to be overlaid.
 > par(mar=c(0,0,0,0))

 6. Perform heatmap graph rendering using the “fi lled.contour3”
function. This modifi ed version of the “fi lled.contour” func-
tion does not draw the color key scale allowing the heatmap to
fully cover the graphic device area.
 > fi lled.contour3(x, y, z=GenValMatrix,

 col=mycol,
 levels = pretty(zlim, 2*max(GenValMatrix,

na.rm=TRUE)),
 frame.plot = FALSE,
 axes = FALSE)

 7. Save current graph to the fi le specifi ed in step 4 and close the
graphic device.
 > dev.off()
 > quartz.save("heatmap.pdf", type="pdf")

 8. Load the heatmap background image created previously in a
variable called “img” using the “readPNG” function of the
“png” package.
 > img <- readPNG(paste(image_name, ".png", sep=""))

 9. Convert the background image into a grid graphical object
using the “rasterGrob” function of the “gridExtra” package.
This object is stored under the name “g.”
 > g <- rasterGrob(img, interpolate=TRUE)

 10. Import data to be shown as a scatter plot. In the example below, a
comma delimited table containing fi ve prime and three prime
intergenic regions for RXLR effector genes (called “RXLR_FIRs.
csv”) is imported using the “as.data.frame” and “read.csv”
functions. Note that the fi le should be located in the R working
directory to allow the omission of the fi lepath when calling the fi le.

 > rxlrData<-as.data.frame(read.csv(' RXLR_FIRs.csv ',
header=TRUE))

 11. Plot the “rxlrData” data as a scatter plot over the grid object
“g” corresponding to the background heatmap image using
the “ggplot” function of the “ggplot2” package. After “aes(“,

Visualisation of Genome Architecture

42

the “x=” and “y=” arguments specify data to use as 5′ and 3′
FIRs, respectively. This should be provided as the name of the
variable referring to the dataset, followed by “$” and the name
of the column containing either 5′ or 3′ FIR length data
(“rxlrData$rxlr_fi ve” and “rxlrData$rxlr_three, respectively in
the example below). The following options are used to format
the graph: “annotation_custom” specifi es the object “g” as a
background image and sets its dimension to the whole plot
area; “”coord_fi xed” locks the x and y ratio to 1 so that the
background always covers the whole plot area; “geom._point”
specifi es the style of dot to use for the scatter plot; “scale_y_
log10” and “scale_x_log10” set axes in logarithm scale and

10
13
16
21
26
33
42
53
66
84

105
133
168
211
267
336
424
535
675
851

1073
1353
1706
2152
2714
3422
4316
5443
6864
8656

10917
13767
17362
21895
27613
34823
43915
55382
69843
88080

10 13 16 21 26 33 42 53 66 84 10
5

13
3

16
8

21
1

26
7

33
6

42
4

53
5

67
5

85
1

10
73

13
53

17
06

21
52

27
14

34
22

43
16

54
43

68
64

86
56

10
91

7
13

76
7

17
36

2
21

89
5

27
61

3
34

82
3

43
91

5
55

38
2

69
84

3
88

08
0

five prime intergenic region

th
re

e
p

ri
m

e
in

te
rg

en
ic

 r
eg

io
n

10

20

30

40

50

60

70

Number of
genes in bins

Genomic context of RXLR effector genes
in Phytophthora infestans genome

RXLR effector
genes

 Fig. 3 Overlay of a scatter plot showing the genomic context for RXLR effector genes on the heatmap of P.
infestans genome architecture. The fi gure shows the output of step 10 of Subheading 3.5 with edits performed
in Adobe Illustrator to display italic fonts in the main title and include a color key and scatter plot legend

Diane G.O. Saunders et al.

43

defi ne their limits; “theme(axis” formats axes labels and titles.
The resulting graph is shown in Fig. 3 . A warning message may
inform you of data points outside the scatter plot range that are
not shown.
 > ggplot(data= rxlrData ,

 aes(x= rxlrData$rxlr_fi ve , y= rxlrData$rxlr_three ,
 geom="blank")) +

 annotation_custom(g, xmin=-Inf, xmax=Inf, ymin=
-Inf,

 ymax=Inf) +
 coord_fi xed(ratio=1) +
 geom_point(shape=21, fi ll="white", colour="black",

 size=4, alpha=0.7, na.rm=FALSE) +
 scale_y_log10(breaks = BinLimits[2:length(BinLimits)],

 limits = c(BinLimits[2], BinLimits
[NumBins +1])) +

 scale_x_log10(breaks= BinLimits
[2:length(BinLimits)],

 l i m i t s = c (B i n L i m i t s [2] ,
BinLimits[NumBins +1])) +

 theme(axis.text.y=element_text(size = 10,
vjust=0.5)) + theme(axis.text.x=element_
text(size=10, vjust=0.5,

 angle=90)) +
 theme(axis.title.x = element_text(face=
"bold",size=12)) +
 xlab("fi ve prime intergenic region") +
 theme(axis.title.y = element_
text(face="bold",size=12)) + ylab("three
prime intergenic region")

4 Notes

 1. For the calculation of intergenic region length in perl
(Subheading 3.1), the “Calculate_FIR_length.pl” script
available from the Figshare repository using the link http://
dx.doi.org/10.6084/m9.fi gshare.707328 . This script takes
either .gff3 or .gtf fi les as input. It sets the values of FIRs at the
border of contigs to “NA” similar to the “getFeat2b” R function
described in Note 2 . To run it, use:
 > perl Calculate_FIR_length.pl
 Several prompts will invite the user to select appropriate
options. First, type in “gff3” or “gtf” to specify whether the
input fi le is in .gff3 or .gtf format:
 Is the fi le in gff3 or gtf format? (gff3/gtf)
 Second, type in the name and extension of the input fi le (e.g.,
“Myfi le.gff3”)

Visualisation of Genome Architecture

http://dx.doi.org/10.6084/m9.figshare.707328
http://dx.doi.org/10.6084/m9.figshare.707328

44

 Please enter the name of the gff or gtf fi le:
 Third, type in “gene”, “mRNA,” or “exon” to specify the type
of feature included in the input fi le to use as gene models:
 Which feature/type to process? (gene/mRNA/exon):
 Finally, enter the name of the output fi le, including the “.csv”
extension (e.g., “MyFIRs.csv”)
 Enter name of output fi le:

 This will produce a comma delimited fi le containing FIR
lengths (stored in the folder where the script was executed). To
import this fi le in R and continue with steps under
Subheading 3.2 of the analysis, use:
 > FIRdata<-read.csv(fi le=" MyFIRs.csv ", sep=",")

 2. By default, the “getFeat2” function calculates distance to the
end of contigs as the FIRs for genes residing at the edge of
contigs. Because contig edges are often diffi cult to assemble,
these FIRs are likely underestimated. As an alternative, you can
use the “getFeat2b” function to set FIRs at the edge of contigs
to “NA,” and therefore ignore them in subsequent steps of the
analysis. To do so, copy the fi le “getFeat2b.R” into your R
working directory. Specify to use this fi le as the source for the
“getFeat2b” function as follows:
 > source(" getFeat2b.R ")
 Then at steps.4 and 7 of Subheading 3.1 call the “getFeat2b”
function instead of “getFeat2” as follows:
 > gffgene<-getFeat2b(x=gff,format=" gff ", range_
types=c("gene"))
 > gffi ntg<-getFeat2b(x=gff, format=" gff ",

 r a n g e _ t y p e s = c (" i n t e r g e n i c ")
)

 3. The methods described here take .gff and .gtf fi les as input.
Gene and intergenic regions’ features are generated using the
custom “getFeat2” function, a modifi ed version of the “get-
Feat” function written by T. Girke available at http://faculty.
ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/
gffMod.R . The fi le type “gff” should be selected when the
annotation fi le contains gene features, and “gtf” fi le type
should be selected otherwise. If the wrong fi le type is selected,
the following error message might show:
 Error in .Call2("solve_user_SEW0", start, end,
width, PACKAGE = "IRanges") : solving row 1: range
cannot be determined from the supplied arguments
(too many NAs)
 To avoid errors while running “getFeat2”, the annotation fi le
should not contain any blank lines and must be sorted by

Diane G.O. Saunders et al.

http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/gffMod.R
http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/gffMod.R
http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/gffMod.R

45

ascending order on the seqname (fi rst column) fi rst and then
start position (third column).

 4. To export the “FIRdata” table as a comma delimited table (.csv
fi le, exported to R working directory by default), the following
instruction can be used:
 > write.table(FIRdata,fi le=" MyFIRs.csv ", sep=",",
row.names=FALSE)
 To import a .csv fi le to start the analysis directly at
Subheading 3.2 use:
 > FIRdata<-read.csv(fi le=" MyFIRs.csv ",sep=",")

 5. A comparison of temporary bins based on quantiles (with
breaks defi ned by “TempBinLimits”) and bins derived from
exponential regression (with breaks defi ned by “BinLimits”)
allows to control whether the distribution of intergenic regions
length in bins has been appropriately optimized. The following
code creates a boxplot representation of data in each bin, for
temporary (grey) and fi nal bins (red), as shown in Fig. 4 . It

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

bins

in
te

rg
en

ic
 r

eg
io

ns

Quantile bins (”TempBinLimits” breaks)

Exponential-fitted bins (”BinLimits” breaks)

 Fig. 4 Distribution of P. infestans intergenic regions length in temporary quantile bins and exponential-fi tted bins

Visualisation of Genome Architecture

46

required installation of the “fi elds” package to run. On
 P. infestans intergenic region data, a signifi cant reduction in
the variance in bins is obtained with the proposed exponential
regression. Alternative regression models may be considered in
 step 8 of Subheading 3.2 for some datasets.
 > x<-seq(length(TempBinLimits))
 > library(fi elds)
 > bplot(FIR2Bin, as.numeric(cut(FIR2Bin,

 breaks=TempBinLimits)),
 breaks=TempBinLimits, xlim=c(1,length(T
empBinLimits)), col="grey", log="y",
xlab="bins", ylab="intergenic regions")

 > par(new=TRUE)
 > bplot(FIR2Bin, as.numeric(cut(FIR2Bin, breaks
=BinLimits)),

 breaks=BinLimits, xlim=c(1,length(BinLimits)),
col="red", log="y", axes=FALSE, ann=FALSE)

 6. To export the “BinLimits” list as list in a text fi le (.txt fi le,
exported to R working directory by default), the following
instruction can be used:
 > write.table(BinLimits,fi le="MyBins.txt")
 To import an external set of bin breaks saved as a .txt fi le, use:
 > BinLimits<-
as.numeric(unlist(read.table(fi le="MyBins.txt",

 header=TRUE, row.names=1)))
 To start the analysis directly from Subheading 3.3 , both
“FIRdata” and “BinLimits” must be imported as described in
 Notes 4 and 6, respectively.

 7. Typical gene-associated values are gene expression values or
number of SNPs per genes. The following example illustrates
how to replace the gene-associated value column in the
“FIRdata” table by imported gene expression data using the
“merge” function. Datasets used in this example are available
in the Figshare repository using the link http://dx.doi.
org/10.6084/m9.fi gshare.707329 .
 > GeneExpression<-
as.data.frame(read.csv('Tom_expression.csv',

 header=TRUE)) #import gene expression data
 > colnames(GeneExpression)<-c("geneid", "genevalue")

 #rename columns in gene expression
data frame

 > FIRdata$genevalue<-NULL
 #delete former gene associated value

 > tempdata<-as.data.frame(FIRdata)
 # convert to data frame to perform merge
function

 > FIRdata<-merge(x=tempdata, y=GeneExpression,
 by.x="geneid", by.y="geneid", all.

x=TRUE)

Diane G.O. Saunders et al.

http://dx.doi.org/10.6084/m9.figshare.707329
http://dx.doi.org/10.6084/m9.figshare.707329

47

 8. Virtually any function can be applied on gene-associated
values, the function “mean” being among the more useful
when analyzing gene expression data. The following creates a
“GenValMatrix” containing average gene expression in bins
using data imported in Note 7 .
 > GenValMatrix<-with(FIRdata, tapply(genevalue,
list(xbin, ybin), mean))

 Functions such as “mean” introduce signifi cant noise in the
heatmap due to bins containing few genes. It is therefore
advisable to ignore bins with too few elements. The following
lines create a “CountMatrix” containing the number of genes
in bins that is used to replace the gene expression values of bins
with less than four genes by “0” in the GenValMatrix.
 > CountMatrix<-with(FIRdata, tapply(genevalue,

 list(xbin, ybin), length))
 > GenValMatrix[CountMatrix < 4]<-0
 The color scale may need to be modifi ed to fi t with the gene-
associated values. In particular, gene expression data contain negative
and positive values and the color scale needs to be adjusted so that
“0” values are shown with a neutral color (here “white”). The fol-
lowing lines generate the gene expression heatmap shown in Fig. 5 .
 > mypalette<-colorRampPalette(c("black", "black",
"darkblue",

 "blue", "dodgerblue3", "dodgerblue",
"white", "goldenrod1", "orangered",
"red3", "red4", "red4 "), space="rgb")

 > mycol=mypalette(7+50 *(max(GenValMatrix, na.rm=TRUE)-
 min(GenValMatrix, na.rm=TRUE)))

 > fi lled.contour(x, y, z=GenValMatrix,
 plot.title = title(main =" Phytophthora infestans

gene
 induction at 2 days post inoculation on

tomato ",
 xlab = "fi ve prime intergenic regions",
 ylab = "three prime intergenic regions", cex.main=0.8,

 cex.lab=0.5),
 key.title = title(main =" Average gene
induction ",

 cex.main=0.5, line=1),
 col=mycol,
 levels = pretty(zlim, 50*(max(GenValMatrix,

na.rm=TRUE)-
 min(GenValMatrix, na.rm=TRUE))),

 plot.axes={axis(1,at=x, labels=mylabels, las=2,
 cex.axis=0.5),
 axis(2,at=y, labels=mylabels, cex.

axis=0.5)})

Visualisation of Genome Architecture

48

 9. To export the “GenValMatrix” table as a comma delimited
table (.csv fi le, exported to R working directory by default),
the following instruction can be used:
 > write.table(GenValMatrix, fi le="MyMatrix.
csv", sep=",", row.names=FALSE)
 To import an external data matrix saved as a .csv fi le, use:
 > GenValMatrix <-as.matrix(read.csv(fi le="MyMatrix.
csv", sep=","))
 To start the analysis directly from Subheading 3.4 , both
“BinLimits” and “GenValMatrix” must be imported as
described in Notes 6 and 9 respectively.

Phytophthora infestans gene expression
at 2 days post inoculation on tomato

Five prime intergenic regions

T
h

re
e

p
ri

m
e

in
te

rg
en

ic
 r

eg
io

n
s

A
ve

ra
g

e
g

en
e

in
d

u
ct

io
n

 r
el

at
iv

e
to

 e
xp

re
ss

io
n

 in
 v

it
ro

 Fig. 5 Heatmap representing the average induction fold at 2 days postinoculation on tomato for P. infestans
genes, relative to gene expression in vitro. Gene induction fold was averaged per bin and plotted as described
in Note 8 . Minor edits were performed in Adobe Illustrator to include italic fonts in the main title and improve
the legibility of the color key and axis labels

Diane G.O. Saunders et al.

49

 10. Data in the “GenValMatrix” matrix can be visualized in 3D
using the “rgl” package. The following describes how, from
 step 6 of the Subheading 3.4 “Heatmap drawing”, a 3D real-
time visualization of the genome architecture can be obtained
(Fig. 6). The “rgl” package must be installed for this method.

 > library(rgl) #load the rgl library
 > clear3d("all") #clear the graphic device
 > rgl.light(theta = 45, phi = 45, viewpoint.
rel=TRUE)
 #light parameters
 > z<-2*GenValMatrix #Exaggerate the relief
 > z[is.na(z)]<-0 #Replace <NA> by '0'
 > x<-20*(1:nrow(z))
 > y<-20*(1:ncol(z)) #set row and column spac-
ing to 20
 > zlim<-range(z, na.rm=TRUE) #determine maximum z
values
 > zlen<-zlim[2]-zlim[1] +1
 > col <- mycol[z-zlim[1]+1] #determine the
matrix of colors
 > rgl.surface(x, y, z, color=col, alpha=1,
back="fi ll")

 11. To display several gene subsets from the same genome as a
scatter plot, a scatter plot background image generated from a
previous analysis can be re-used. For this, skip steps 3 – 7 of

10

20

30

40

50

60

70

Number of
genes in bins

1
−

 1
0

13
 −

 1
6

16
 −

 2
1

21
 −

 2
6

26
 −

 3
3

33
 −

 4
2

42
 −

 5
3

53
 −

 6
6

66
 −

 8
4

84
 −

 1
05

10
5

−
 1

33
13

3
−

 1
68

16
8

−
 2

11
21

1
−

 2
67

26
7

−
 3

36
33

6
−

 4
24

42
4

−
 5

35
53

5
−

 6
75

67
5

−
 8

51
85

1
−

 1
07

3
10

73
 −

 1
35

3
13

53
 −

17
06

17
06

 −
 2

15
2

21
52

 −
 2

71
4

27
14

 −
 3

42
2

34
22

 −
 4

31
6

43
16

 −
 5

44
3

54
43

 −
 6

86
4

68
64

 −
 8

65
6

86
56

 −
 1

09
17

10
91

7
−

 1
37

67
13

76
7

−
 1

73
62

17
36

2
−

 2
18

95
21

89
5

−
 2

76
13

27
61

3
−

 3
48

23
34

82
3

−
 4

39
15

43
91

5
−

 5
53

82
55

38
2

−
 6

98
43

69
84

3
−

 8
80

80
88

08
0

−
 4

23
42

7

Five prime intergenic regions

Three prime
intergenic
regions

Phytophthora infestans genome
10

 −
 1

3

 Fig. 6 A 3D view of gene counts in P. infestans genome created using RGL package. Legends and axis labels
were added in Adobe Illustrator

Visualisation of Genome Architecture

50

Subheading 3.5 and replace the variable “image_name” by the
name of the image fi le to import in step 8 of Subheading 3.5 .

 12. File formats JPEG and TIFF are supported for the scatter plot
background image. To write the background image fi le in the
chosen format, replace step 4 of Subheading 3.5 with one of
the following:
 > jpeg(fi lename = paste(image_name, ".jpeg", sep=""))
 > tiff(fi lename = paste(image_name, ".tiff", sep=""))
 Loading JPEG or TIFF fi les in R will require the “EBImage”
package. Replace step 8 of Subheading 3.5 by the following,
using either “.jpeg” or “.tiff” as the fi le extension:
 > library("EBImage")
 > img <- readImage(fi les = paste(image_name, " .
jpeg ", sep=""))

 Acknowledgments

 We are grateful to Adam Taranto for comments on drafts of this
chapter.

 References

 1. Koonin EV, Wolf YI (2010) Constraints and
plasticity in genome and molecular-phenome
evolution. Nat Rev Genet 11:487–498

 2. Haas BJ et al (2009) Genome sequence and
analysis of the Irish potato famine pathogen
Phytophthora infestans. Nature 461:393–398

 3. Spanu PD, Abbott JC, Amselem J, Burgis TA,
Soanes DM, Stüber K, Loren van Themaat EV,
Brown JKM, Butcher SA, Gurr SJ (2010)
Genome Expansion and Gene Loss in Powdery
Mildew Fungi Reveal Tradeoffs in Extreme
Parasitism. Science 330:1543

 4. Duplessis S, Cuomo CA, Lin YC, Aerts A,
Tisserant E, Veneault-Fourrey C, Joly DL,
Hacquard S, Amselem J, Cantarel BL (2011)
Obligate biotrophy features unraveled by the
genomic analysis of rust fungi. Proc Natl Acad
Sci 108:9166

 5. Raffaele S, Win J, Cano L, Kamoun S (2010)
Analyses of genome architecture and gene
expression reveal novel candidate virulence fac-
tors in the secretome of Phytophthora infestans.
BMC Genomics 11:637

 6. van Damme M, Cano L, Oliva R, Schornack S,
Segretin ME, Kamoun S, Raffaele, S (2012)
Evolutionary and Functional Dynamics of
Oomycete Effector Genes. In: Martin F,

Kamoun S (eds) Effectors in plant-microbe
interactions. Wiley, pp 103–122

 7. Vleeshouwers VGAA, Raffaele S, Vossen JH,
Champouret N, Oliva R, Segretin ME,
Rietman H, Cano LM, Lokossou A, Kessel G
(2011) Understanding and Exploiting Late
Blight Resistance in the Age of Effectors. Annu
Rev Phytopathol 49:507–531

 8. Raffaele S, Kamoun S (2012) Genome evolu-
tion in fi lamentous plant pathogens: why bigger
can be better. Nat Rev Microbiol 10:417–430

 9. Pain A et al (2008) The genome of the simian
and human malaria parasite Plasmodium
knowlesi. Nature 455:799–803

 10. Lévesque CA et al (2010) Genome sequence of
the necrotrophic plant pathogen Pythium ulti-
mum reveals original pathogenicity mecha-
nisms and effector repertoire. Genome Biol
11:R73

 11. Win J, Morgan W, Bos J, Krasileva KV, Cano
LM, Chaparro-Garcia A, Ammar R, Staskawicz
BJ, Kamoun S (2007) Adaptive Evolution Has
Targeted the C-Terminal Domain of the RXLR
Effectors of Plant Pathogenic Oomycetes. Plant
Cell 19:2349–2369

 12. Kemen E, Gardiner A, Schultz-Larsen T,
Kemen AC, Balmuth AL, Robert-Seilaniantz A,

Diane G.O. Saunders et al.

51

Bailey K, Holub E, Studholme DJ, MacLean D
(2011) Gene Gain and Loss during Evolution
of Obligate Parasitism in the White Rust
Pathogen of Arabidopsis thaliana. PLoS Biol
9:e1001094

 13. Sharma VK, Kumar N, Prakash T, Taylor TD
(2012) Fast and Accurate Taxonomic
Assignments of Metagenomic Sequences Using
MetaBin. PLoS One 7:e34030

 14. Xiong X, Xu W, Eberlin LS, Wiseman JM, Fang
X, Jiang Y, Huang Z, Zhang Y, Cooks RG,
Ouyang Z (2012) Data Processing for 3D

Mass Spectrometry Imaging. J Am Soc Mass
Spectrom 23:1147–1156

 15. Mendhurwar KA, Devabhaktuni VK, Raut R
(2008) Binning algorithm for accurate computer
aided device modeling. In: International sympo-
sium on circuits and systems. pp 2773–2776

 16. Raffaele S, Farrer RA, Cano LM, Studholme
DJ, MacLean D, Thines M, Jiang RHY, Zody
MC, Kunjeti SG, Donofrio NM (2010)
Genome Evolution Following Host Jumps in
the Irish Potato Famine Pathogen Lineage.
Science 330:1540

Visualisation of Genome Architecture

	Chapter 3: Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes
	1 Introduction
	2 Materials
	2.1 Required R Packages
	2.2 Required Custom R Functions
	2.3 Optional R Packages
	2.4 Sample Datasets

	3 Methods
	3.1 Calculation of Flanking Intergenic Regions
	3.2 Bin Breaks Setup
	3.3 Data Binning
	3.4 Heatmap Drawing
	3.5 Overlaying a Scatter Plot Over a Genome Architecture Heatmap

	4 Notes
	References

