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    Chapter 3   

 Two-Dimensional Data Binning for the Analysis 
of Genome Architecture in Filamentous 
Plant Pathogens and Other Eukaryotes 

           Diane     G.    O.     Saunders    ,     Joe     Win    ,     Sophien     Kamoun    , and     Sylvain     Raffaele    

    Abstract 

   Genome architecture often refl ects an organism’s lifestyle and can therefore provide insights into gene 
function, regulation, and adaptation. In several lineages of plant pathogenic fungi and oomycetes, charac-
teristic repeat-rich and gene-sparse regions harbor pathogenicity-related genes such as effectors. In these 
pathogens, analysis of genome architecture has assisted the mining for novel candidate effector genes and 
investigations into patterns of gene regulation and evolution at the whole genome level. Here we describe 
a two-dimensional data binning method in R with a heatmap-style graphical output to facilitate analysis 
and visualization of whole genome architecture. The method is fl exible, combining whole genome archi-
tecture heatmaps with scatter plots of the genomic environment of selected gene sets. This enables analysis 
of specifi c values associated with genes such as gene expression and sequence polymorphisms, according to 
genome architecture. This method enables the investigation of whole genome architecture and reveals 
local properties of genomic neighborhoods in a clear and concise manner.  

  Key words     Genome architecture  ,   Data binning  ,   Intergenic  ,   R  ,   Visualization  ,   Heatmap  ,   Effectors  , 
  Filamentous plant pathogen  

1       Introduction 

 Comparative genomic analyses have revealed that evolutionary 
constraints often disparately affect coding, regulatory, and non- 
coding sequences. In addition, the distribution of these constraints 
largely depends on the relative position of genetic elements in the 
genome, referred to as the “genome architecture” [ 1 ]. In eukary-
otic genomes, the organization of genes and genomic neighbor-
hoods has evolved to ensure accurate regulation of gene expression 
and splicing. However, the plasticity of their structure can exceed 
that of their sequence, leading to structural re-arrangements over 
short evolutionary scales whereas genetic sequences, which are 
under strong constraints, diverge only minimally. The evolution of 
genome architecture is largely driven by genetic drift, but is also 
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constrained by lifestyles and specifi c biological contexts [ 1 ]. 
Therefore, studies of genome architecture and its evolution can 
provide signifi cant insight into gene regulation and function, and 
the underlying molecular bases of adaptation. 

 The recent generation of genomic data for plant pathogenic 
fungi and oomycetes has revealed an expansion in genome size in 
several unrelated lineages [ 2 – 4 ]. For example, in the late blight 
oomycete pathogen  Phytophthora infestans , a repeat-driven expan-
sion of the genome has created repeat-rich, gene-sparse regions 
that are distinct from the gene-dense conserved regions [ 2 ]. For 
every gene, the distance to its closest gene neighbors in either 
direction, designated as its fl anking intergenic regions (FIRs), can 
be used to determine whether a gene resides in a gene-dense or 
gene-sparse environment. A dramatic enrichment in genes associ-
ated with virulence is observed in  P. infestans  repeat-rich, gene- 
sparse regions, [ 2 ,  5 ]. Accordingly, most  P. infestans  effector genes 
have longer FIRs than the genome average [ 6 ,  7 ]. Although less 
striking than  P. infestans , repeat-rich genomic niches harboring 
pathogenicity-related genes are also found in several other fi lamen-
tous plant pathogens, including  Magnaporthe oryzae  telomeric 
regions,  Leptosphaeria maculans  AT-rich isochores, and  Fusarium  
spp. conditionally dispensable chromosomes [ 8 ]. Genes encoding 
 Vir  antigens in the malaria parasite  Plasmodium falciparum  reside 
in repeat-rich regions of the genome suggesting that some animal 
eukaryotic parasites have also evolved repeat-rich regions that host 
pathogenicity-associated genes [ 9 ]. 

 Given that genes associated with pathogenicity tend to have 
long FIRs in some pathogen genomes, genome architecture can, 
in some cases, be used to identify new candidate pathogenicity 
genes. For example, the oomycete pathogen  Pythium ultimum  
lacks a key family of oomycete effectors, known as “RXLR-type” 
effectors that contain a conserved Arginine-X-Leucine-Arginine 
N-terminal motif involved in translocation into host cells [ 10 , 
 11 ]. Analysis of the architecture of the  P. ultimum  genome com-
bined with Markov clustering resulted in the identifi cation of a 
novel family of the candidate effector genes encoding small-
secreted proteins with a conserved N-terminal domain. This 
domain contains a YXSL[RK] motif strongly enriched in secreted 
proteins and typically located between amino acid 60 and 80, 
similar to the RXLR motif [ 10 ,  11 ]. This example clearly illus-
trates how examining genome architecture can help to reveal 
novel effector candidates. 

 Analysis of genome architecture through the visualization of 
the length and distribution of intergenic regions is one way to gain 
insights into the biology and evolution of eukaryotes. Eukaryotic 
genomes are typically comprised of between 5,000 and 50,000 
genes, each fl anked by two intergenic regions (5′ and 3′ FIRs). To 
facilitate the mathematical analysis of such large datasets, 
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 “quantization,” the process of mapping a large set of input values 
onto a smaller set, is often used. Data binning is a quantization 
method, replacing values that fall within a given interval (called a 
“bin”) by a value representative of this interval, thereby reducing 
the number of values to analyze. 

 Here we report a method that was developed using two- 
dimensional data binning to visualize both the 5′ and 3′ inter-
genic regions on either side of each gene in a single representation. 
In this approach, genes are sorted into bins that are defi ned 
fi rstly by the length of the 5′ intergenic regions (fi rst dimension) 
and secondly by the length of 3′ intergenic regions (second 
dimension). In the simplest implementation of the method, the 
representative value of a bin is the number of genes it contains. 
This is represented by a color code in a heatmap or as a third 
dimensional value in a surface plot, providing a view of gene-
density distribution [ 2 ,  12 ]. Using this method the genome 
architecture for a whole genome can also be compared to a 
smaller dataset, such as the length of intergenic regions for a 
small subset of genes. Indeed, the method described here offers 
the opportunity to overlay a scatter plot of a particular subset of 
genes on the whole genome heatmap, thereby highlighting the 
position of selected genes in the genome architecture. This 
approach was used to compare the FIRs of effector genes to the 
architecture of whole genomes in  Phytophthora  spp., illustrating 
that effector genes preferentially reside in gene- sparse regions of 
these genomes [ 2 ,  5 – 7 ]. 

 Data binning is also used as a pre-processing technique to 
accelerate analyses and reduce the bias caused by minor observa-
tion errors in metagenomics [ 13 ], mass spectrometry imaging 
[ 14 ], and modeling [ 15 ]. In comparative genomics, data binning 
has proved useful in revealing local properties of genomic neigh-
borhoods. Values describing gene properties can be associated 
with every gene and processed per bin, providing a representative 
value for genes in the same bin that have FIRs of similar length. 
Using  in planta  expression data as an associated value,  P. infestans  
gene-sparse regions were shown to be enriched in transcriptionally 
induced genes during plant infection [ 16 ]. Analyses of the fre-
quency and the type of single nucleotide polymorphisms and gene 
copy number as associated values led to the concept of a “two- 
speed genome,” with gene-sparse regions evolving faster than 
gene-dense regions in the  P. infestans  lineage [ 16 ]. 

 We describe here a method to perform two-dimensional bin-
ning of genes based on the length of their FIRs, overlay a scatter 
plot over the resulting heatmap graph, and analyze the distribu-
tion of gene-associated values such as gene expression and 
sequence polymorphisms, according to genome architecture. 
The method, implemented in R, takes standard gff or gtf coordi-
nate fi les as input and produces datasets and graphics that can be 
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exported in any format handled by R. It is composed of fi ve major 
sections (Fig.  1 ):

     1.    Calculation of FIRs length based on gff/gtf input.   
   2.    Determination of optimal bins based on quantiles and expo-

nential regression.   
   3.    Data binning.   
   4.    Representation of binned data as a heatmap graph.   
   5.    Optional: Overlay of a scatter plot representing FIRs for a 

subset of genes.    

GFF or GTF file
(Note 3)

Table of FIRs
(“FIRdata”)

3.1

“MyFIRs.csv”
CSV file Note 4

Bin breaks
(“BinLimits”)

3.2

Data matrix
(“GenValMatrix”)

Gene-associated 
value (e.g. expression,

number of SNPs,...)

Note 7

Operation on
gene-associated values
(e.g. sum, average,...)

Note 8 3.3

Heatmap graphic
representation
(Figures 2 & 5)

3D graphics
representation

(Figure 6)

Note 9

Overlay scatter
plot (Figure 3)

Import FIR data
for display as a 

scatter plot

3.4

3.5

Input

Output

Optional step

Required step

Note 1

Scatter plot
background image
(“image_name”)

Note 11

Note 12

“MyBins.txt”
TXT fileNote 6

“MyMatrix.csv”
CSV fileNote 9

  Fig. 1       Overview of the method showing required and optional analysis steps. Numbers refer to Subheadings  3  
and  4 . The core of the method is shown in a  gray box , with optional inputs ( green ) and outputs ( red  ) connected 
with  dotted arrows        
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  Intermediary output fi les can be exported or imported at each 
major step of the analysis, as explained in the corresponding notes 
and outlined in Fig.  1 . 

 The shape of genome architecture heatmaps is largely depen-
dent on the choice of the bin size. If a bin size is too large local 
variations in genome environment are collapsed. Conversely, if a 
bin size is too small gene frequencies fl uctuate greatly and patterns 
of genome architecture cannot be distinguished. In many eukary-
otic genomes, the length of intergenic regions in a genome roughly 
follows a Gaussian distribution. Considering the form of Gaussian 
functions, we approximated that the length of intergenic regions 
varies proportionally to the logarithm of gene frequencies. To fi t 
with this property, the proposed method determines bins of size 
increasing exponentially. 

 For global analysis of genome architecture, section fi ve can be 
disregarded. The methods for data binning    (Subheading  3.3 ) and 
 Notes 7  and  8  describe how to associate values with genes, provid-
ing the opportunity to analyze the distribution of these values 
according to genome architecture. In the following command 
lines, parameters to be set by the user are underlined. All com-
mands should run if typed in or copied in the R console as shown, 
omitting the initial “> ” prompt. Long command lines are split 
across lines for clarity reasons, and should run if typed in as a single 
line or copied in the R console as a whole (omitting the initial 
“> ”).  

2      Materials 

         1.    The following R base packages are required: “base,” “graphics,” 
“grDevices,” “stats,” “utils,” installed by default with 
R.2.XX.X. We recommend running R 3.0.1 or above for better 
compatibility.   

   2.    Three packages from the bioconductor suite are needed, and 
they can be downloaded and installed with the following 
instructions:     
  > source("    http://bioconductor.org/biocLite.R      ")  
  > biocLite("GenomicRanges")  
  > biocLite("rtracklayer")  
  > biocLite("Rsamtools") 

    3.    Four packages hosted by the CRAN mirror sites can be 
downloaded directly using the “install.packages” function as 
follows:    
   > install.packages("png")  
  > install.packages("gridExtra")  
  > install.packages("ggplot2")   

2.1  Required R 
Packages

Visualisation of Genome Architecture
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      1.    The methods use the function “getFeat2” or “getFeat2b”, mod-
ifi ed versions of the “getFeat” function contributed by Thomas 
Girke. The codes of the “getFeat2” and “getFeat2b” functions 
can be downloaded from the Figshare repository using the links 
  http://dx.doi.org/10.6084/m9.fi gshare.707325     and   http://
dx.doi.org/10.6084/m9.fi gshare.707326     respectively.   

   2.    The methods use the function “fi lled.contour3” that can be down-
loaded using the link   http://dx.doi.org/10.6084/m9.fi g-
share.707327     to the Figshare repository. This is a modifi ed version 
of the “fi lled.contour” function contributed by Ian Taylor, Carey 
McGilliard, and Bridget Ferris available at   http://wiki.cbr.wash-
ington.edu/qerm/sites/qerm/images/1/16/Filled.contour3.R    .      

      1.    Alternative methods proposed in Subheading  4  use the “fi elds” 
and “rgl” packages hosted by the CRAN mirror sites and 
“EBImage” bioconductor package. They can be installed using 
the following instructions:     
  > install.packages("fi elds")  
  > install.packages("rgl")  
  > source("    http://bioconductor.org/biocLite.R      ")  
  > biocLite("EBImage")   

  The description of methods in Subheadings  3  and  4  was performed 
on  P. infestans  datasets described in [ 2 ]. Pre-processed fi les, as used 
in the following Subheading  3 , can be downloaded from the 
Figshare repository using the link   http://dx.doi.org/10.6084/
m9.fi gshare.707329    . This archive includes:

    1.    The “Mygtf.gtf” fi le containing the fi nal transcript calls for  P. 
infestans  genome version 2.4. The original fi le is available at 
  http://www.broadinstitute.org/annotation/genome/phy-
tophthora_infestans/MultiDownloads.html    . The fi le “Mygtf.
gtf” imported in  step 3  of Subheading  3.1  is a modifi ed ver-
sion in which lines were sorted in ascending order on the seq-
name and start position columns according to  Note 3 .   

   2.    The “RXLR_FIRs.csv” fi le containing intergenic regions 
length for RXLR effector genes only, imported in  step 10  of 
Subheading  3.5 .   

   3.    The “Tom_expression.csv” fi le containing gene induction val-
ues at 2 days post inoculation on tomato, imported in  Note 7 .    

3           Methods 

 The following methods describe the procedure to draw genome 
architecture heatmaps and overlay them with scatter plots in R. An 
alternative method for calculating intergenic region length 
(Subheading  3.1 ) in perl is proposed in  Note 1 . 

2.2  Required Custom 
R Functions

2.3  Optional R 
Packages

2.4  Sample Datasets
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          1.    Copy the fi le “getFeat2.R” into your R working directory. 
Specify the use of this fi le as the source for the “getFeat2” 
function as follows:     
  > source("getFeat2.R")  
 You may want to ignore genes at the ends of contigs in the 
analysis. In this case the “getFeat2b” function should be used 
instead of “getFeat2”. See  Note 2  for details on how to use it.

    2.    Load libraries required for this section.    
   > library(rtracklayer)  
  > library(GenomicRanges)  
  > library(Rsamtools) 

    3.    Place a copy of the .gff fi le containing feature coordinates for the 
genome to analyze in your R working directory. Files in the .gff or 
.gtf format are accepted as input. They must contain either “gene,” 
“exon” or “start codon,” and “stop codon” features for the “get-
Feat2” function to work ( see   Note 3 ). Import the gff fi le using the 
“import.gff” function of the GenomicRanges package, replacing 
“Mygtf.gtf” by the name and extension of the fi le to analyze.    
    > gff<- import.gff("  Mygtf.gtf  ", asRangedData 
=FALSE) 

    4.    Generate a Range object called “gffgene” containing gene fea-
tures using the “getFeat2” function. Specify the type of the fi le 
imported (“gff” or “gtf”) after the “format=” parameter.    
   > gffgene<-getFeat2(x=gff, format="  gtf  ", 
range_types=c("gene")) 

    5.    Restore the gene strand information lost after processing using 
the “getFeat2” function.    
   > strand(gffgene)<-mcols(gffgene)$score 

    6.    Clean up the temporary strand information column.    
   > mcols(gffgene)$score<-NULL 

    7.    Generate a Range object called “gffi ntg” containing intergenic 
region features using the “getFeat2” function. Specify the type 
of the fi le imported (“gff” or “gtf”) after the “format=” param-
eter. This operation can take some time to complete.    
   > gffi ntg<-getFeat2(x=gff, format="  gtf  ",  

  range_types=c("intergenic")) 
    8.    Create a data frame object called “length_intg” containing one 

column with intergenic regions indexes and another column 
with intergenic regions length.    
   > length_intg<-  

   as.data.frame(cbind(seq(1:length(ranges(gffi
ntg))), as.numeric(mcols(gffi ntg)$length))) 

    9.    Rename columns of the “length_intg” data frame as “index” 
and “length” for convenience in future references.    

3.1  Calculation of 
Flanking Intergenic 
Regions

Visualisation of Genome Architecture
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   > colnames(length_intg)<-c("index", "length") 
    10.    Create a list called “three_intg_index” of indexes for intergenic 

regions following every gene (located at the 3′ end of each 
gene), using the “precede” function of the GenomicRanges 
package.    
   > three_intg_index<-precede(gffgene, gffi ntg) 

    11.    Create a list called “fi ve_intg_index” of indexes for intergenic 
regions preceding every gene (located at the 5′ end of each gene), 
using the “follow” function of the GenomicRanges package.    
   > fi ve_intg_index<-follow(gffgene, gffi ntg) 

    12.    Create a data frame object called “gene_data” containing col-
umns with gene identifi ers, gene strand, fi ve prime, and three 
prime intergenic region indexes.    
   > gene_data<-  

   as.data.frame(cbind(as.character(mcols(gffg
ene)$group), as.character(strand(gffgene)), 
as.numeric(fi ve_intg_index), as.numeric
(three_intg_index))) 

    13.    Rename columns of the “gene_data” data frame as “geneid,” 
“strand,” “FivePrime_index,” and “ThreePrime_index” for 
convenience in future references.    
    > colnames(gene_data)<-c("geneid", "strand", 
"FivePrime_index", "ThreePrime_index") 

    14.    Merge “gene_data” and “length_intg” data frames into a 
“tempdata” data frame using indexes for fi ve prime intergenic 
regions as a common data column between the two data 
frames. The “all.x=TRUE” parameter allows lines of the 
“gene_data” data frame to be kept with no fi ve prime inter-
genic region index.    
   > tempdata<-merge(x=gene_data, y=length_intg,  

   by.x="FivePrime_index", by.y="index", 
all.x=TRUE) 

    15.    Rename columns of the “temp_data” data frame as “delete1”, 
“geneid”, “strand”, “ThreePrime_index,” and “fi veprime” to 
avoid confl icts with the following steps of the process.    
    > colnames(tempdata)<-c("delete1", "geneid", 
"strand", "ThreePrime_index", "fi veprime") 

    16.    Merge “tempdata” and “length_intg” data frames into a 
“FIRdata” data frame using indexes for three prime intergenic 
regions as a common data column between the two data frames. 
The “all.x=TRUE” parameter allows lines of the “gene_data” 
data frame to be kept with no three prime intergenic region index.    
   > FIRdata<-merge(x=tempdata, y=length_intg,  

  by.x="ThreePrime_index", by.y="index", 
all.x=TRUE) 
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    17.    Clean up unnecessary columns in the “FIRdata” data frame 
object.    
   > FIRdata$ThreePrime_index<-NULL  
  > FIRdata$delete1<-NULL 

    18.    Rename columns of the “FIRdata” data frame as “geneid,” 
“strand,” “fi veprime,” and “threeprime” for convenience in 
future references. The FIRdata table can be exported for exter-
nal use ( see   Note 4 ).    
   > colnames(FIRdata)<-  

   c("geneid", "strand", "fi veprime", "threeprime")   

         1.    Set the number of bins to use by replacing “40” in the code 
line below. This number is stored under the variable name 
“NumBins.” We recommend values between 10 and 60 for an 
appropriate representation of most eukaryotic genomes.     
  > NumBins=  40 

    2.    The size and breaks of bins will be calculated based either on fi ve 
prime or three prime intergenic regions length, depending on 
which list contains the longest intergenic region of the genome. 
The corresponding list is stored under the variable name “FIR2Bin”    
    > if ((max(FIRdata$fi veprime, na.rm=TRUE)>max
(FIRdata$threeprime, na.rm=TRUE)) == TRUE) 
{  
  FIR2Bin<-FIRdata$fi veprime  
  } else {  
  FIR2Bin<-FIRdata$threeprime  
  } 

    3.    Remove intergenic regions of length 0 or with no length 
assigned from the “FIR2Bin” list.    
   > FIR2Bin=FIR2Bin[which(FIR2Bin!=0)]  
  > FIR2Bin<-na.omit(FIR2Bin) 

    4.    Determine the number of entries “BinSteps” per bin to sepa-
rate all entries in the “FIR2Bin” list into a number of quantiles 
equal to “Numbins-1”    
   >  BinSteps<-round(length(FIR2Bin)/(Num Bins-1), 
digits=0) 

    5.    Sort the length of intergenic regions stored in the “FIR2Bin” 
list in ascending order; store the ordered list under the variable 
name “FIR2BinOrd”.    
   > FIR2BinOrd<-sort(FIR2Bin) 

    6.    Determine the temporary bin breaks stored based on inter-
genic region lengths, the position of which delimits quantiles 
of length “BinSteps.” The list of temporary bin breaks is stored 
under the list named “TempBinLimits.”    
   >  TempBinLimits<-FIR2BinOrd[seq(FIR2BinOrd[2*
BinSteps],  

  length(FIR2BinOrd),BinSteps)] 

3.2  Bin Breaks Setup

Visualisation of Genome Architecture
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    7.    To allow a more complete coverage of the range of intergenic 
region length present in the genome analyze, the maximum 
value in the list “FIR2Bin” is added as the last break in the list 
“TempBinLimit”.    
   > TempBinLimits[length(TempBinLimits)+1]<-  

  max(FIR2Bin, na.rm=TRUE) 
    8.    Fit an exponential distribution to the values of temporary bin 

breaks in “TemBinLimits” list using the non-linear regression 
function “nls.” A prevalent weight is given to the extreme val-
ues in the “TempBinLimits” list during the regression to 
ensure a better representation of genes with extreme intergenic 
region length ( see   Note 5 ).    
   > x<-seq(length(TempBinLimits))  
   > fi t<-nls(log(TempBinLimits) ~ a*x + b, start
= c(a=0, b=0),  

  algorithm='port',weights=((x-0.5
* NumBins)^2)) 

    9.    Calculates the predicted bin breaks based on the exponential 
regression and store values in the “BinLimits” list.     
   > pred=predict(fi t, x)  
   > BinLimits=c(1, round(exp(pred),0), max(FIR2Bin))  

 Comparisons of the architecture of several genomes, using 
the same set of bin breaks might be required.  Note 6  describes 
how to export the list of bin breaks calculated here and how to 
import an external list of bin breaks.  

        1.    Assign fi ve prime and three prime intergenic regions of every 
gene to bins delimited by breaks in the “BinLimits” list. Assigned 
bins are stored under variables called “xbin” and “ybin” for fi ve 
prime and three prime intergenic regions, respectively.     
  > xbin=cut(FIRdata$fi veprime, breaks= c(BinLimits))  
  > ybin=cut(FIRdata$threeprime, breaks= c(BinLimits)) 

    2.    Concatenate the list of assigned bins to the “FIRdata” data 
frame. This step also concatenates a list of gene-associated values 
called “genevalue” that is set to “1” for every gene. A custom list 
of gene-associated values can be provided instead ( see   Note 7 ).    
   > FIRdata<-cbind(FIRdata, xbin, ybin,  

  genevalue=rep(1, length (FIRdata$fi veprime))) 
    3.    Create the matrix “GenValMatrix” containing the number of 

genes in each bin. The number of genes is calculated by sum-
ming up gene-associated values of 1 for each gene, using the 
function “sum.” Other operations can be performed on gene- 
associated values using different built-in or custom functions 
( see   Note 8 ).  Note 9  describes how to export the matrix calcu-
lated here or how to import an external matrix of values.    

3.3  Data Binning
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    > GenValMatrix<-with(FIRdata, tapply(genevalue, 
list(xbin, ybin), sum))   

         1.    Set units of the graph axes in the three dimensions using the 
number of columns in “GenValMatrix”, the number of rows in 
“GenValMatrix,” and the maximum value in “GenValMatrix” 
for  x ,  y , and  z  dimensions, respectively.     

  > x<-1:ncol(GenValMatrix)  
  > y<-1:nrow(GenValMatrix)  
   > zlim = range(as.numeric (unlist(GenVal
Matrix)) , fi nite=TRUE) 

    2.    Set the color palette “mypalette” using the “colorRampPal-
ette” function. The number and identifi ers of colors can be 
freely chosen to modify the aspect of the heatmap, by changing 
the list proposed below.    
    > mypalette<-colorRampPalette(c(   "white", 
"darkblue", "forestgreen", "goldenrod1", 
"orangered", "red3", "darkred"  ), space="rgb") 

    3.    Create a list of colors “mycol” based on the “mypalette” color 
palette and the number of subdivisions “mynlevels.”    
   > mycol=mypalette(2*max(GenValMatrix, na.rm=TRUE)) 

    4.    Create a list of labels “mylabels” for axes by concatenating the 
length of the shortest and longest intergenic regions in each 
bin (stored in the “BinLimits” list) separated by a hyphen.    
    > mylabels<-paste(BinLimits[1:length(BinLim
its)-1], BinLimits[2:length(BinLimits)], sep=" 
- ", collapse=NULL) 

    5.    Perform heatmap graph rendering using the “fi lled.contour” 
function (Fig.  2 ). 3D rendering of the “GenValMatrix” matrix 
is also possible ( see   Note 10 ).
        > fi lled.contour(x, y, z=GenValMatrix,  

  plot.title = title(main ="  Phytophthora infestans 
genome  ",  

  xlab = "fi ve prime intergenic regions",  
  ylab = "three prime intergenic regions",  
  cex.main=0.8, cex.lab=0.5),  
   key.title = title(main ="Number of 
genes", cex.main=0.5,  

  line=1),  
  col=mycol,  
  levels = pretty(zlim, 2*max(GenValMatrix, 

na.rm=TRUE)),  
   plot.axes={axis(1,at=x, labels=mylabels, las=2,  

  cex.axis=0.5);  
  axis(2,at=y, labels=mylabels, 

cex.axis=0.5)})   

3.4  Heatmap 
Drawing
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            1.    Copy the code of the “fi lled.contour3” function given in 
Subheading  2  into a text fi le named “fi lled.contour3.R” and 
place this fi le in your R working directory. Specify the use of 
this fi le as the source for the “fi lled.contour3” function as 
follows:     
  > source('fi lled.contour3.R') 

    2.    Load libraries required for this section.    
   > library(png)  
  > library(gridExtra)  
  > library(ggplot2) 

    3.    See  Note 11  if you want to re-use a scatter plot background 
image generated from a previous analysis. Automatically set the 
name of the heatmap image fi le to be used as a background for 
the scatter plot. The name is composed of the system date 
(year, month, and day) and time (hours, minutes, seconds) 

3.5  Overlaying a 
Scatter Plot Over a 
Genome Architecture 
Heatmap
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  Fig. 2    The heatmap plot output of  step 5  of Subheading  3.4 , representing gene counts in  P. infestans  genome. 
The initial gtf fi le was obtained at   http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/
MultiDownloads.html    . Minor edits were performed in Adobe Illustrator to include italic fonts in the main title 
and improve the legibility of the color key and axis labels       
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 followed by “_graph” and stored in the variable “image_name” 
for future reference.    
   > image_name<-paste(as.character(format(Sys.time(),  

   "%Y%m%d%H%M%S")), "_graph", sep="") 
    4.    Create a .png image fi le in your R working directory named 

after the “image_name” variable. For alternative image fi le for-
mats  see   Note 12 .    
   > png(fi lename = paste(image_name, ".png", sep="")) 

    5.    Remove margins of the graph so that it fully covers the back-
ground of the scatter plot to be overlaid.    
   > par(mar=c(0,0,0,0)) 

    6.    Perform heatmap graph rendering using the “fi lled.contour3” 
function. This modifi ed version of the “fi lled.contour” func-
tion does not draw the color key scale allowing the heatmap to 
fully cover the graphic device area.    
   > fi lled.contour3(x, y, z=GenValMatrix,  

  col=mycol,  
  levels = pretty(zlim, 2*max(GenValMatrix, 

na.rm=TRUE)),  
  frame.plot = FALSE,  
  axes = FALSE) 

    7.    Save current graph to the fi le specifi ed in  step 4  and close the 
graphic device.    
   > dev.off()  
  > quartz.save("heatmap.pdf", type="pdf") 

    8.    Load the heatmap background image created previously in a 
variable called “img” using the “readPNG” function of the 
“png” package.    
   > img <- readPNG(paste(image_name, ".png", sep="")) 

    9.    Convert the background image into a grid graphical object 
using the “rasterGrob” function of the “gridExtra” package. 
This object is stored under the name “g.”    
   > g <- rasterGrob(img, interpolate=TRUE) 

    10.    Import data to be shown as a scatter plot. In the example below, a 
comma delimited table containing fi ve prime and three prime 
intergenic regions for RXLR effector genes (called “RXLR_FIRs.
csv”) is imported using the “as.data.frame” and “read.csv” 
functions. Note that the fi le should be located in the R working 
directory to allow the omission of the fi lepath when calling the fi le.    

    > rxlrData<-as.data.frame(read.csv('  RXLR_FIRs.csv  ', 
header=TRUE)) 

    11.    Plot the “rxlrData” data as a scatter plot over the grid object 
“g” corresponding to the background heatmap image using 
the “ggplot” function of the “ggplot2” package. After “aes(“, 

Visualisation of Genome Architecture



42

the “x=” and “y=” arguments specify data to use as 5′ and 3′ 
FIRs, respectively. This should be provided as the name of the 
variable referring to the dataset, followed by “$” and the name 
of the column containing either 5′ or 3′ FIR length data 
(“rxlrData$rxlr_fi ve” and “rxlrData$rxlr_three, respectively in 
the example below). The following options are used to format 
the graph: “annotation_custom” specifi es the object “g” as a 
background image and sets its dimension to the whole plot 
area; “”coord_fi xed” locks the x and y ratio to 1 so that the 
background always covers the whole plot area; “geom._point” 
specifi es the style of dot to use for the scatter plot; “scale_y_
log10” and “scale_x_log10” set axes in logarithm scale and 
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defi ne their limits; “theme(axis” formats axes labels and titles. 
The resulting graph is shown in Fig.  3 . A warning message may 
inform you of data points outside the scatter plot range that are 
not shown.
        > ggplot(data=  rxlrData  ,  

  aes(x=  rxlrData$rxlr_fi ve  , y=  rxlrData$rxlr_three  ,  
  geom="blank")) +  

  annotation_custom(g, xmin=-Inf, xmax=Inf, ymin= 
-Inf,  

  ymax=Inf) +  
  coord_fi xed(ratio=1) +  
  geom_point(shape=21, fi ll="white", colour="black",  

  size=4, alpha=0.7, na.rm=FALSE) +  
  scale_y_log10(breaks = BinLimits[2:length(BinLimits)],  

  limits = c(BinLimits[2], BinLimits
[NumBins +1])) +  

  scale_x_log10(breaks= BinLimits 
[2:length(BinLimits)],  

  l i m i t s = c ( B i n L i m i t s [ 2 ] , 
BinLimits[NumBins +1])) +  

  theme(axis.text.y=element_text(size = 10, 
vjust=0.5)) + theme(axis.text.x=element_
text(size=10, vjust=0.5,  

  angle=90)) +  
   theme(axis.title.x = element_text(face=
"bold",size=12)) +  
  xlab("fi ve prime intergenic region") +  
   theme(axis.title.y = element_
text(face="bold",size=12)) + ylab("three 
prime intergenic region")    

4        Notes 

     1.    For the calculation of intergenic region length in perl 
(Subheading  3.1 ), the “Calculate_FIR_length.pl” script 
available from the Figshare repository using the link   http://
dx.doi.org/10.6084/m9.fi gshare.707328    . This script takes 
either .gff3 or .gtf fi les as input. It sets the values of FIRs at the 
border of contigs to “NA” similar to the “getFeat2b” R function 
described in  Note 2 . To run it, use:     
  > perl Calculate_FIR_length.pl  
 Several prompts will invite the user to select appropriate 
options. First, type in “gff3” or “gtf” to specify whether the 
input fi le is in .gff3 or .gtf format: 
  Is the fi le in gff3 or gtf format? (gff3/gtf)  
 Second, type in the name and extension of the input fi le (e.g., 
“Myfi le.gff3”) 

Visualisation of Genome Architecture

http://dx.doi.org/10.6084/m9.figshare.707328
http://dx.doi.org/10.6084/m9.figshare.707328


44

  Please enter the name of the gff or gtf fi le:  
 Third, type in “gene”, “mRNA,” or “exon” to specify the type 
of feature included in the input fi le to use as gene models: 
  Which feature/type to process? (gene/mRNA/exon):  
 Finally, enter the name of the output fi le, including the “.csv” 
extension (e.g., “MyFIRs.csv”) 
  Enter name of output fi le:  

 This will produce a comma delimited fi le containing FIR 
lengths (stored in the folder where the script was executed). To 
import this fi le in R and continue with steps under 
Subheading  3.2  of the analysis, use: 
  > FIRdata<-read.csv(fi le="  MyFIRs.csv  ", sep=",") 

    2.    By default, the “getFeat2” function calculates distance to the 
end of contigs as the FIRs for genes residing at the edge of 
contigs. Because contig edges are often diffi cult to assemble, 
these FIRs are likely underestimated. As an alternative, you can 
use the “getFeat2b” function to set FIRs at the edge of contigs 
to “NA,” and therefore ignore them in subsequent steps of the 
analysis. To do so, copy the fi le “getFeat2b.R” into your R 
working directory. Specify to use this fi le as the source for the 
“getFeat2b” function as follows:    
   > source(" getFeat2b.R ")  
 Then at  steps.4  and  7  of Subheading  3.1  call the “getFeat2b” 
function instead of “getFeat2” as follows: 
  > gffgene<-getFeat2b(x=gff,format="  gff  ", range_ 
types=c("gene"))  
  > gffi ntg<-getFeat2b(x=gff, format="  gff  ",  

   r a n g e _ t y p e s = c ( " i n t e r g e n i c " )
) 

    3.    The methods described here take .gff and .gtf fi les as input. 
Gene and intergenic regions’ features are generated using the 
custom “getFeat2” function, a modifi ed version of the “get-
Feat” function written by T. Girke available at   http://faculty.
ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/
gffMod.R    . The fi le type “gff” should be selected when the 
annotation fi le contains gene features, and “gtf” fi le type 
should be selected otherwise. If the wrong fi le type is selected, 
the following error message might show:    
    Error in .Call2("solve_user_SEW0", start, end, 
width, PACKAGE = "IRanges") : solving row 1: range 
cannot be determined from the supplied arguments 
(too many NAs)  
 To avoid errors while running “getFeat2”, the annotation fi le 
should not contain any blank lines and must be sorted by 
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ascending order on the seqname (fi rst column) fi rst and then 
start position (third column).

    4.    To export the “FIRdata” table as a comma delimited table (.csv 
fi le, exported to R working directory by default), the following 
instruction can be used:     
   > write.table(FIRdata,fi le="  MyFIRs.csv  ", sep=",", 
row.names=FALSE)  
 To import a .csv fi le to start the analysis directly at 
Subheading  3.2  use: 
  > FIRdata<-read.csv(fi le="  MyFIRs.csv  ",sep=",") 

    5.    A comparison of temporary bins based on quantiles (with 
breaks defi ned by “TempBinLimits”) and bins derived from 
exponential regression (with breaks defi ned by “BinLimits”) 
allows to control whether the distribution of intergenic regions 
length in bins has been appropriately optimized. The following 
code creates a boxplot representation of data in each bin, for 
temporary (grey) and fi nal bins (red), as shown in Fig.  4 . It 
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required installation of the “fi elds” package to run. On 
 P. infestans  intergenic region data, a signifi cant reduction in 
the variance in bins is obtained with the proposed exponential 
regression. Alternative regression models may be considered in 
 step 8  of Subheading  3.2  for some datasets.
        > x<-seq(length(TempBinLimits))  
  > library(fi elds)  
  > bplot(FIR2Bin, as.numeric(cut(FIR2Bin,  

  breaks=TempBinLimits)),  
   breaks=TempBinLimits, xlim=c(1,length(T
empBinLimits)), col="grey", log="y", 
xlab="bins", ylab="intergenic regions")  

  > par(new=TRUE)  
  > bplot(FIR2Bin, as.numeric(cut(FIR2Bin, breaks 
=BinLimits)),  

   breaks=BinLimits, xlim=c(1,length(BinLimits)), 
col="red", log="y", axes=FALSE, ann=FALSE) 

    6.    To export the “BinLimits” list as list in a text fi le (.txt fi le, 
exported to R working directory by default), the following 
instruction can be used:    
   > write.table(BinLimits,fi le="MyBins.txt")  
  To import an external set of bin breaks saved as a .txt fi le, use: 
   > BinLimits<-
as.numeric(unlist(read.table(fi le="MyBins.txt",  

  header=TRUE, row.names=1)))  
 To start the analysis directly from Subheading  3.3 , both 
“FIRdata” and “BinLimits” must be imported as described in 
 Notes 4  and  6,  respectively.

    7.    Typical gene-associated values are gene expression values or 
number of SNPs per genes. The following example illustrates 
how to replace the gene-associated value column in the 
“FIRdata” table by imported gene expression data using the 
“merge” function. Datasets used in this example are available 
in the Figshare repository using the link   http://dx.doi.
org/10.6084/m9.fi gshare.707329    .    
    > GeneExpression<-
as.data.frame(read.csv('Tom_expression.csv',  

  header=TRUE)) #import gene expression data  
   > colnames(GeneExpression)<-c("geneid", "genevalue")  

  #rename columns in gene expression 
data frame  

  > FIRdata$genevalue<-NULL  
  #delete former gene associated value  

  > tempdata<-as.data.frame(FIRdata)  
   # convert to data frame to perform merge 
function  

  > FIRdata<-merge(x=tempdata, y=GeneExpression,  
  by.x="geneid", by.y="geneid", all.

x=TRUE) 
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    8.    Virtually any function can be applied on gene-associated 
values, the function “mean” being among the more useful 
when analyzing gene expression data. The following creates a 
“GenValMatrix” containing average gene expression in bins 
using data imported in  Note 7 .    
   >  GenValMatrix<-with(FIRdata, tapply(genevalue, 
list(xbin, ybin), mean))  

 Functions such as “mean” introduce signifi cant noise in the 
heatmap due to bins containing few genes. It is therefore 
advisable to ignore bins with too few elements. The following 
lines create a “CountMatrix” containing the number of genes 
in bins that is used to replace the gene expression values of bins 
with less than four genes by “0” in the GenValMatrix. 
   > CountMatrix<-with(FIRdata, tapply(genevalue,  

  list(xbin, ybin), length))  
  > GenValMatrix[CountMatrix   < 4  ]<-0  
 The color scale may need to be modifi ed to fi t with the gene- 
associated values. In particular, gene expression data contain negative 
and positive values and the color scale needs to be adjusted so that 
“0” values are shown with a neutral color (here “white”). The fol-
lowing lines generate the gene expression heatmap shown in Fig.  5  . 
     > mypalette<-colorRampPalette(c(  "black", "black", 
"darkblue",  

   "blue", "dodgerblue3", "dodgerblue", 
"white", "goldenrod1", "orangered", 
"red3", "red4", "red4  "), space="rgb")  

  > mycol=mypalette(  7+50  *(max(GenValMatrix, na.rm=TRUE)-  
  min(GenValMatrix, na.rm=TRUE)))  

  > fi lled.contour(x, y, z=GenValMatrix,  
  plot.title = title(main ="  Phytophthora infestans 

gene  
  induction at 2 days post inoculation on 

tomato  ",  
  xlab = "fi ve prime intergenic regions",  
  ylab = "three prime intergenic regions", cex.main=0.8,  

  cex.lab=0.5),  
   key.title = title(main ="  Average gene 
induction  ",  

  cex.main=0.5, line=1),  
  col=mycol,  
  levels = pretty(zlim, 50*(max(GenValMatrix, 

na.rm=TRUE)-  
  min(GenValMatrix, na.rm=TRUE))),  

  plot.axes={axis(1,at=x, labels=mylabels, las=2,  
  cex.axis=0.5),  
  axis(2,at=y, labels=mylabels, cex.

axis=0.5)}) 
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    9.    To export the “GenValMatrix” table as a comma delimited 
table (.csv fi le, exported to R working directory by default), 
the following instruction can be used:    
    > write.table(GenValMatrix, fi le="MyMatrix.
csv", sep=",", row.names=FALSE)  
 To import an external data matrix saved as a .csv fi le, use: 
   > GenValMatrix <-as.matrix(read.csv(fi le="MyMatrix.
csv", sep=","))  
 To start the analysis directly from Subheading  3.4 , both 
“BinLimits” and “GenValMatrix” must be imported as 
described in  Notes 6  and  9  respectively.
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  Fig. 5    Heatmap representing the average induction fold at 2 days postinoculation on tomato for  P. infestans  
genes, relative to gene expression in vitro. Gene induction fold was averaged per bin and plotted as described 
in  Note 8 . Minor edits were performed in Adobe Illustrator to include italic fonts in the main title and improve 
the legibility of the color key and axis labels       
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    10.    Data in the “GenValMatrix” matrix can be visualized in 3D 
using the “rgl” package. The following describes how, from 
 step 6  of the Subheading  3.4  “Heatmap drawing”, a 3D real- 
time visualization of the genome architecture can be obtained 
(Fig.  6 ). The “rgl” package must be installed for this method.

        > library(rgl)    #load the rgl library  
  > clear3d("all")   #clear the graphic device  
  > rgl.light(theta = 45, phi = 45, viewpoint.
rel=TRUE)  
  #light parameters  
  > z<-2*GenValMatrix   #Exaggerate the relief  
  > z[is.na(z)]<-0 #Replace <NA> by '0'  
  > x<-20*(1:nrow(z))  
  > y<-20*(1:ncol(z)) #set row and column spac-
ing to 20  
  > zlim<-range(z, na.rm=TRUE) #determine maximum z 
values  
  > zlen<-zlim[2]-zlim[1] +1  
  > col <- mycol[z-zlim[1]+1] #determine the 
matrix of colors  
  > rgl.surface(x, y, z, color=col, alpha=1, 
back="fi ll") 

    11.    To display several gene subsets from the same genome as a 
scatter plot, a scatter plot background image generated from a 
previous analysis can be re-used. For this, skip  steps 3 – 7  of 
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  Fig. 6    A 3D view of gene counts in  P. infestans  genome created using RGL package. Legends and axis labels 
were added in Adobe Illustrator       
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Subheading  3.5  and replace the variable “image_name” by the 
name of the image fi le to import in  step 8  of Subheading  3.5 .   

   12.    File formats JPEG and TIFF are supported for the scatter plot 
background image. To write the background image fi le in the 
chosen format, replace  step 4  of Subheading  3.5  with one of 
the following:    
   > jpeg(fi lename = paste(image_name, ".jpeg", sep=""))  
  > tiff(fi lename = paste(image_name, ".tiff", sep=""))  
 Loading JPEG or TIFF fi les in R will require the “EBImage” 
package. Replace  step 8  of Subheading  3.5  by the following, 
using either “.jpeg” or “.tiff” as the fi le extension: 
  > library("EBImage")  
  > img <- readImage(fi les = paste(image_name, "  .
jpeg  ", sep=""))      
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