
Phosphatidylinositol monophosphate-binding interface in
the oomycete RXLR effector AVR3a is required for its
stability in host cells to modulate plant immunity
Takashi Yaenoa, Hua Lib, Angela Chaparro-Garciac, Sebastian Schornackc, Seizo Koshibab,d, Satoru Watanabeb,
Takanori Kigawab,e, Sophien Kamounc, and Ken Shirasua,1

aPlant Science Center and bSystems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; cThe Sainsbury
Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; dDepartment of Supramolecular Biology, Graduate School of Nanobioscience,
Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; and eDepartment of Computational Intelligence and Systems Science,
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan

Edited* by Brian J. Staskawicz, University of California, Berkeley, CA, and approved July 7, 2011 (received for review April 14, 2011)

The oomycete pathogen Phytophthora infestans causes potato
late blight, one of the most economically damaging plant diseases
worldwide. P. infestans produces AVR3a, an essential modular vir-
ulence effector with an N-terminal RXLR domain that is required
for host-cell entry. In host cells, AVR3a stabilizes and inhibits the
function of the E3 ubiquitin ligase CMPG1, a key factor in host
immune responses including cell death triggered by the patho-
gen-derived elicitor protein INF1 elicitin. To elucidate the molecu-
lar basis of AVR3a effector function, we determined the structure
of Phytophthora capsici AVR3a4, a close homolog of P. infestans
AVR3a. Our structural and functional analyses reveal that the ef-
fector domain of AVR3a contains a conserved, positively charged
patch and that this region, rather than the RXLR domain, is re-
quired for binding to phosphatidylinositol monophosphates (PIPs)
in vitro. Mutations affecting PIP binding do not abolish AVR3a
recognition by the resistance protein R3a but reduce its ability to
suppress INF1-triggered cell death in planta. Similarly, stabilization
of CMPG1 in planta is diminished by these mutations. The steady-
state levels of non–PIP-binding mutant proteins in planta are re-
duced greatly, although these proteins are stable in vitro. Further-
more, overexpression of a phosphatidylinositol phosphate 5-kinase
results in reduction of AVR3a levels in planta. Our results sug-
gest that the PIP-binding ability of the AVR3a effector domain is
essential for its accumulation inside host cells to suppress CMPG1-
dependent immunity.
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The oomycete pathogen Phytophthora infestans is the causal
agent of the late blight disease that led to the Irish potato

famine in the late 1840s. Late blight still is one of the most se-
rious biological threats to food security with yield losses caused
by the pathogen in developing countries estimated to reach $6.7
billion annually (1). The P. infestans genome encodes a large
repertoire of secreted disease effector proteins that are predicted
to alter host physiology for successful colonization (2). After
secretion, these effectors either accumulate in the plant in-
tercellular space (apoplast) or translocate into host cells (3).
Apoplastic effectors mainly are hydrolyzing enzymes, possibly
functioning to degrade plant materials, or inhibitors, which block
host defense-related enzymes. In contrast, RXLR and Crinkler
(CRN) effectors function inside host cells to alter immune-sig-
naling pathways (3, 4). The virulence mechanisms of these host-
translocated effectors and the identity of the plant molecules
they bind and target are poorly understood.
RXLR effectors are defined as modular secreted proteins that

contain the characteristic amino-terminal motif Arg-X-Leu-Arg
(where X is any amino acid) with rapidly evolving C-terminal
effector domains (5, 6). The P. infestans genome is estimated to
encode ∼550 RXLR effectors, many more than in the other
sequenced Phytophthora species, P. sojae, P. ramorum, and

P. capsici (2, 7). Recent work reported that the N-terminal end of
P. sojae Avr1b containing the RXLR motif is necessary and suf-
ficient for both binding to phosphatidylinositol-3-phosphate
(PI3P) and translocation into host cells (8, 9). Furthermore,
a number of effectors from unrelated fungi were reported to
contain motifs similar to RXLR and also mediated PI3P binding
and cell entry. Based on these findings, Kale et al. (8) proposed
that oomycete and fungal effector proteins bind to PI3P on the
extracellular surface of host cells to facilitate entry into the host
cytoplasm. However, this view has been challenged by a more
recent report showing that the fungal effectors AvrM and
AvrL567 do not require PI3P binding for cell entry (10).
P. infestans AVR3a originally was identified as an avirulence

effector that is recognized by the corresponding resistance protein
R3a in potato (11). Two major forms of naturally occurring Avr3a
alleles are known:AVR3aK80I103 (AVR3aKI) is recognized byR3a,
and the other, AVR3aE80M103 (AVR3aEM), evades recognition by
the resistance protein (12). In the absence of R3a, both forms are
able to suppress host cell death induced by the P. infestans elicitor
protein INF1, although AVR3aKI exhibits stronger inhibition ac-
tivity (12). The ability of AVR3a to suppress INF1-induced cell
death is abolished by the deletion of the C-terminal tyrosine
(AVR3aY147del), but this deletion does not affect recognition by
R3a, indicating that these two effector properties are mechanis-
tically distinct (13). Indeed, AVR3a interacts with and stabilizes
the host E3 ubiquitin ligase CMPG1 that mediates INF1-induced
cell death but not R3a-triggered cell death (14–16). Consistently,
the AVR3aY147del mutant fails to bind and stabilize CMPG1 in
planta (14).
To understand the molecular basis of AVR3a effector activi-

ties, we determined the NMR solution structure of AVR3a4,
a close homolog of AVR3a and Avr1b, from the pepper and
cucurbit pathogen P. capsici. The structural and functional
analyses of these effectors indicated that the AVR3a effector
domain contains a conserved, positively charged surface patch
and that this region, but not the RXLR domain, is required for
binding to phosphatidylinositol monophosphates (PIPs). The
steady-state levels of the non–PIP-binding AVR3a mutant pro-
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teins were reduced greatly in planta, although these proteins
were properly folded and stable in vitro and were recognized by
R3a in planta. In addition, overexpression of a phosphatidylino-
sitol phosphate 5-kinase (PIP5K) led to reduction of WT AVR3a
in planta. Thus, our results strongly suggest that the PIP-binding
ability of the effector domain of AVR3a is essential for its ac-
cumulation inside host cells where it is required to modulate
CMPG1-dependent plant immunity. These results do not sup-
port a general role for the RXLR domain in PIP binding.

Results and Discussion
Structural and Modeling Analysis of AVR3a4 and AVR3a. To study
how AVR3a functions, we performed NMR-based structure and
modeling analyses. First, we tested the solubility of derivatives of
AVR3a and three close homologs, AVR3a4 and AVR3a11 from
P. capsici andAvr1b fromP. sojae. Thenweassessed thepropensity
of the proteins to fold in vitro by 2D 1H-15N heteronuclear single
quantum coherence spectra. Of the tested proteins, matured
AVR3a4 lacking the signal peptide (Asn22–Tyr122) was found to
be the most soluble and best folded in solution and therefore was
used for further NMR structure analysis. The structural statistics
and the NMR constraints of AVR3a4-derived peptide (Asn22–
Tyr122) are summarized inTable S1. The effector domain (Gly59–
Tyr122) formed a bundle of four α-helices (α1, Phe60–Ala75; α2,
Lys79–Lys90; α3, Leu94–Phe100; α4, Asp110–Asp121) (Fig. 1 A
and B), whereas the N-terminal region including the RXLR do-
main (Asn22–Arg58) was disordered. The rmsd for the helical
regions of the effector domain are 0.36 Å for the backbone atoms
and 0.83 Å for the heavy atoms. Based on the highly conserved
sequences betweenAVR3a4 andAVR3a (Fig. 1A), a 3D structure
of theAVR3a effector domain was built using homologymodeling
techniques (Fig. 1C). The modeled structure of the AVR3a
effector domain (Ala77–Tyr147) also comprised four α-helices
(α1, Thr79–Gly93; α2, Leu97–Asn107; α3, Leu112–Lys120; α4,
Asn132–Leu142). Using theAVR3a structural model, wemapped
Lys80 and Ile103, the key amino acids for recognition by R3a, on
the N terminus of the α1 helix and the middle of the α2 helix, re-
spectively (Fig. 1D). In addition, amino acid residues whose sub-

stitution in AVR3aEM can regain R3a recognition were mapped
on the exposed surface (Fig. S1A) (13). In contrast, most amino
acids responsible for loss-of-function alleles were buried inside the
helix bundle maintained by the interaction between W105 and
Y135 that defines theW and Ymotifs postulated by Dou et al. (9)
(Fig. S1 B and C). C-terminal Tyr147, which is necessary for in-
teraction with the E3 ubiquitin ligase CMPG1 and for suppression
of INF1-induced cell death (14), was on a prominent flexible
portion away from the putative R3a-recognition region of the
other surface, suggesting that recognition regions for R3a and
CMPG1 are physically distinct (Fig. 1D). However, because Y147
was on the flexible tail, it still is possible that Tyr147 may com-
municate with Lys80 and Ile103, which are required for suppres-
sion of INF1-induced cell death (12).
Mapping of the surface-charge distributions of AVR3a and

AVR3a4 indicated that both proteins contain a patch of posi-
tively charged amino acids on one face and that these amino
acids are derived mainly from the α1 helix (Fig. 1 E and F).
Indeed, the positively charged amino acids Arg81, Lys85, Lys86,
and Lys89 are conserved completely among all the homologs
(Fig. 1A), indicating that this surface is likely to be important for
function. A similar case was reported for the epsin N-terminal
homology domain, which contains a conserved positively charged
area on the bundle of four α-helices important for binding to
phosphatidylinositol-4,5-bisphosphate (PI4,5P2) (17). This find-
ing is of particular interest because Avr1b previously was shown
to bind to specific phospholipids (8).

AVR3a Binds to PIPs Via the Effector Domain, Not the RXLR Domain.
To test whether AVR3a and AVR3a4 also bind to specific PIPs,
a protein lipid overlay assay was performed with recombinant C-
terminal GST-fusions of AVR3a (Asp23–Tyr147) and AVR3a4
(Asn22–Tyr122). AVR3a specifically bound to PI3P, phosphati-
dylinositol-4-phosphate (PI4P), and PI5P, but AVR3a4 did not
bind to any of the PIPs (Fig. 2A). This result was surprising,
because both recombinant AVR3 and AVR3a4 proteins possess
an RXLR domain, which has been reported to function as a PIP-
binding module (8). Instead, we noticed that the positively
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Fig. 1. Structural analysis of AVR3a4 and AVR3a. (A) Multiple sequence alignment of the effector domain of Phytophthora AVR3a and homologs. AVR3a4
and AVR3a11 are from P. capsici, Avr1b is from P. sojae, and AVR3a is from P. infestans. The helical regions and corresponding amino acid positions for
AVR3a4 are shown above the alignment and for AVR3a are shown below the alignment. (B and C) Ribbon diagrams of the structures of (B) AVR3a4 and (C)
AVR3a. (D) The important residues for R3a recognition (K80, green; I103, cyan) and INF1-induced cell death (Y147, purple) are mapped on the ribbon diagram
(Left) and the surface structure (Right) of AVR3a. (E and F) Surface charge distribution of (E) AVR3a4 and (F) AVR3a. Electrostatic potential was calculated
with PyMol (DeLano Scientific). Positively and negatively charged surfaces are shown in blue and red, respectively.
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charged surface of the AVR3a4 effector domain is partially
disrupted by negatively charged patches which presumably
originate from the N-terminal half of the α1 helix (Glu62–Val66)
(Fig. 1E), and we thought that this disruption might explain the
differences in the PIP-binding activities of the two proteins. In
fact, the fusion protein of the RXLR domain of AVR3a4
(Asn22–Arg58) with the effector domain of AVR3a (Ala60–
Y147) bound to PIPs, whereas the chimera protein consisting of
the RXLR domain and the α1 helix of AVR3a4 (Asn22–Met74)
fused with the α2–α4 helices of AVR3a (Gly93–Tyr147) did not
bind to any lipids (Fig. S2). These results do not support the
notion that the RXLR domain of AVR3a4 contributes to PIP
binding but suggest that the effector domain, in particular the α1
helix of AVR3a, is required for PIP binding. Consequently, we
examined further whether the RXLR domain or the effector
domain of AVR3a is required for binding to lipids by comparing
the binding affinities of AVR3a variants to membranes spotted
with serial dilutions of PIPs. An AVR3a derivative in which the
RXLR motif RLLR (amino acids 44–47) was replaced by four
Ala residues (AVR3aRLLR/AAAA) still bound to PI3P, PI4P, and
PI5P to the same extent as the WT (AVR3aKI) (Fig. 2B). Fur-
thermore, the C-terminal effector domain (Ala60–Tyr147)
bound to PIPs, but the N-terminal region including the RXLR
domain (Asp23–Arg59) did not (Fig. 2B). These results indicate
that, unlike the previous report for Avr1b (8), AVR3a binds to
PIPs via its C-terminal effector domain but not the N-terminal
RXLR domain. In addition, the RXLR domain is not required
for PIP binding.

Positively Charged Patch of the AVR3a Effector Domain Is Required
for PIP Binding. To determine if the positively charged area of the
effector domain is responsible for PIP binding, AVR3a mutants
were generated by substituting Arg81, Lys85, Lys86, or Lys89
with the negatively charged amino acid glutamate (designated as
AVR3aR81E, AVR3aK85E, AVR3aK86E, or AVR3aK89E, respec-
tively; Fig. 2C). We found that AVR3aR81E and AVR3aK86E

bound to PIPs with affinities similar to the WT protein. In
contrast, the PIP-binding ability of AVR3aK85E and AVR3aK89E

was lost or significantly reduced, respectively (Fig. 2D). In
agreement with this result, the homology model of AVR3aK85E

showed that the positively charged patch was disturbed by Glu85
(Fig. S3). Taking these results together, we conclude that the
positively charged patch of the AVR3a effector domain is re-
quired for binding to PIPs.
Given that P. sojae Avr1b is a close homolog of AVR3a, we

explored the possibility that the effector domain of Avr1b also is
involved in PIP binding. Molecular modeling of Avr1b revealed
that, like AVR3a, the effector domain of Avr1b contains a pos-
itively charged surface patch in which the positively charged
residues Lys79 and Lys83 correspond closely to Lys85 and Lys89
of AVR3a (Fig. 3A). Therefore, we re-examined the PIP-binding
ability of Avr1b. As reported previously (8), WT Avr1b (Thr22–
Ser138) bound to PIPs with a preference for PI3P (Fig. 3B).
However, the PIP-binding ability of Avr1bK79E was greatly re-
duced, and the Avr1bK79E/K83E double mutation almost com-
pletely abolished lipid binding (Fig. 3B). Additionally, two inde-
pendent RXLR mutants, Avr1bRFLR/AAAA and Avr1bRFLR/QFLR,
bound to PIPs with the same affinity and specificity as WT
(Fig. 3B). Together these results indicate that, as in AVR3a, the
positively charged area formed by Lys79 and Lys83 in the ef-
fector domain, but not in the RXLR domain, is responsible for
PIP binding by Avr1b. This result is markedly inconsistent with the
previously reported topology of Avr1b lipid-binding activity (8).

PIP Binding Is Not Involved in Recognition of AVR3a by R3a. Coin-
filtration of Nicotiana benthamiana leaves with mixtures of
Agrobacterium tumefaciens strains expressing Avr3a and R3a
results in the induction of R3a-dependent cell death (Fig. 4A)
(11). The naturally occurring variant AVR3aEM, which is not
recognized by R3a, was able to bind to PIPs to a similar extent
as AVR3aKI (Figs. 2 and 4 A and B), implying that PIP binding
and R3a recognition are distinct activities. Reciprocally, the
AVR3aR81E, AVR3aK85E, AVR3aK86E, and AVR3aK89E mu-
tants, in which the positively charged patch is disrupted, retained
the ability to induce R3a-dependent cell death (Fig. 4 A and B),
confirming that PIP binding is not involved in recognition by
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Fig. 2. The positively charged patch of the effector domain of AVR3a is required for binding to PIPs. (A) Protein lipid overlay assay of AVR3a and AVR3a4.
One hundred picomoles of various lipids were spotted onto nitrocellulose membranes and incubated overnight with E. coli-expressed AVR3a-GST or AVR3a4-
GST proteins at 4 °C. After rigorous washing, the bound proteins were detected using anti–GST-HRP antibodies. PA, phosphatidic acid; PC, phosphatidyl-
choline; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PI3P, PI-3-phosphate; PI4P, PI-4-phosphate; PI5P, PI-5-phosphate; PI3,4P2, PI-3,4-biphosphate;
PI3,5P2, PI-3,5-biphosphate; PI4,5P2, PI-4,5-biphosphate; PI3,4,5P3, PI-3,4,5-triphosphate; PS, phosphatidylserine; S1P, sphingosine-1-phosphate. (B) PIP
binding of the RXLR mutant (RLLR/AAAA), the N-terminal region including the RXLR domain (23–59), and the effector domain (60–147) of AVR3a. Serial
dilutions (200, 100, 50, 25, 12.5, and 6.25 pmol) of PI3P, PI4P, and PI5P were spotted onto nitrocellulose membranes. The protein lipid overlay assay was
performed as in Fig. 2A. (C) Positions of positively charged amino acids Arg81, Lys85, Lys86, and Lys89 on the AVR3a structure. (D) PIP binding of AVR3a
variants with mutations in the positively charged surface patch. The protein lipid overlay assay was performed as in Fig. 2A. EM, AVR3aEM; WT, wild-type
AVR3aKI.
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R3a. Importantly, our results also indicate that these mutations
do not affect the overall structure of AVR3a.

PIP Binding Is Required for Suppression of INF1-Induced Cell Death.
Next, we examined whether mutations that reduce PIP binding
also affect the suppression of INF1-induced cell death. In this
assay, WT AVR3a or AVR3a mutants were transiently expressed
in N. benthamiana by infiltration of recombinant A. tumefaciens
strains into the leaves, followed by reinfiltration of the same area
1 d later with an INF1-expressing strain (Fig. 4 C and D) (12).
AVR3aY147del was used as a positive control because it reduces
the suppression activity of INF1-induced cell death to a degree
similar to that observed in empty vector controls. Likewise,
AVR3aK85E and AVR3aK89E failed to suppress INF1-induced
cell death, suggesting that PIP binding is required for this
suppression activity.

PIP Binding Is Necessary for Accumulation of CMPG1 and AVR3a in
Planta. Because AVR3a is known to interact with and stabilize
CMPG1 to suppress INF1-induced cell death (14), we tested
whether mutations that reduce PIP binding also affect the
steady-state levels of CMPG1 in planta. CMPG1 with an N-
terminal 4× myc tag was coexpressed with N-terminal FLAG-
tagged AVR3a mutants in N. benthamiana by agro infiltration.
As previously reported, WT and AVR3aEM, but not AVR3aY147,
stabilized CMPG1 (Fig. 5A) and enabled its detection in im-
munoblots as two distinct migrating bands (14). In contrast,
AVR3aK85E was not able to stabilize CMPG1. In plants
expressing AVR3aK89E, the intensity of the upper CMPG1 band
was reduced significantly, whereas the level of lower band
remained similar to that observed for WT AVR3a (Fig. 5A). This
result is consistent with inability of non–PIP-binding mutants to
suppress INF1-induced cell death. Interestingly, the steady-state
levels of AVR3aK85E and AVR3aK89E also were reduced to
a certain extent in planta, with or without CMPG1 co-over-
expression (Fig. 5 A and B). Importantly, purified Escherichia
coli-expressed AVR3aK85E and AVR3aK89E did not aggregate
and were stably soluble in vitro even after overnight incubation
at room temperature (Fig. 5B). Furthermore, the circular di-
chroism spectra of the WT and AVR3aK85E were nearly identi-
cal, suggesting that these proteins are folded properly (Fig. 5C).
In the yeast two-hybrid experiments, both WT AVR3a and
AVR3aK85E were able to interact with CMPG1, also suggesting

that AVR3aK85E is properly folded and that Lys85 is not required
for its association with CMPG1 (Fig. 5D).
To test if the in planta reduction of AVR3aK85E protein levels

was caused by the introduction of a negative charge into the pos-
itively charged PIP-binding patch on the surface of the protein, we
examined two other mutants, AVR3aK85A and AVR3aK85G, in
which uncharged amino acidswere substituted at position 85.As in
AVR3aK85E, the PIP-binding ability of AVR3aK85G was greatly
reduced. Surprisingly, however, AVR3aK85A bound to PIPs with
the same affinity asWT (Fig. 5E). Similarly, the steady-state levels
ofAVR3aK85Gwere reduced comparedwith those ofAVR3aK85E,
but AVR3aK85A and WT were stable in planta (Fig. 5F). Fur-
thermore, AVR3aK85G, but not AVR3aK85A, failed to suppress
INF1-induced cell death (Fig. 5G). These results demonstrate that
the PIP-binding ability of AVR3a is tightly correlated with its
stability to suppress INF1-induced cell death in planta.

PIP5K1 OX Suppresses Accumulation of AVR3a in Planta. To study the
relationship between PIPs and AVR3a in planta, we examined
whether AVR3a was associated with membranes where PIPs are
localized (18, 19). The accumulation of AVR3a was detected
predominantly in the Nonidet P-40–treated extracts that contain
a membrane marker H+-ATPase, suggesting that AVR3a was
present mainly in the membrane fraction (Fig. 6A). Because
PI5PKs are known to be a modulator for phosphorylation states
of membrane PIPs (20–25), we tested whether AVR3a levels
were affected by overexpression of PIP5K1, which phosphor-
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ylates PI3P and PI4P to PI3,4P2 and PI4,5P2, respectively (20).
In N. benthamiana leaves coexpressing PIP5K1, the steady-state
levels of AVR3a, but not plasma membrane-localized H+-
ATPase and cytoplasmic UDPase, were reduced significantly

(Fig. 6B). Consistently, AVR3a failed to suppress INF1-induced
cell death in the PIP5K1-overexpressed leaves (Fig. 6 C and D).
These results indicate further that PIP binding is crucial for
AVR3a accumulation in planta.

Possible Roles of PIP Binding in AVR3a. Previous study has shown
that the RXLR domain of AVR3a is sufficient for translocation
of the effector into host cells (6). Our data presented here
demonstrate that PIP binding is mediated not by the RXLR
domain but by the positively charged surface patch of the
C-terminal effector domain. Thus, our findings argue strongly
against the proposed hypothesis for the general role of extra-
cellular PI3P in RXLR-mediated effector entry (8). What is the
role of AVR3a binding to PIPs? One possible function of PIP
binding by AVR3a is to target CMPG1 effectively to endo-
membrane compartments within the host cytoplasm. Indeed,
a recent report showed that CMPG1 was detectable in slow-
moving vesicles in the host cytoplasm (15). Interestingly, when
co-overexpressed with AVR3a in the absence of R3a, CMPG1
was found in the cytoplasm and nucleus (15). Furthermore, bi-
molecular fluorescence complementation experiments indicated
that CMPG1 and AVR3a coexist mainly in the nucleus. We
hypothesize that once PIP-bound AVR3a interacts with CMPG1,
the AVR3a–CMPG1 complex may be released from vesicles and
eventually accumulate in the nucleus where AVR3a stabilizes
CMPG1 and alters its function. In the absence of PIP binding,
AVR3a may become accessible to detection and removal by an
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unknown host-intrinsic mechanism, thereby explaining the re-
duced stability of the non–PIP-binding mutants.
Our findings point to a PIP-binding module in the C termini

of at least two Phytophthora RXLR effectors and suggest an
important role for PIP-binding activity inside plant cells. Kale
et al. (8) showed that several structurally unrelated fungal
effectors bind PIPs, and recently Gan et al. (10) also showed
that the C terminus of the flax rust effector AvrM strongly binds
to phosphatidylinositol, PIPs, and phosphatidylserine. However,
they ruled out a role for this activity in effector uptake into
plant cells because the AvrM region that is sufficient for host
translocation did not bind PIPs. Thus, lipid binding inside
host cells may be a common feature of many oomycete and
fungal effectors. In the future, understanding the molecular
basis and the biological functions of effector lipid binding
should help elucidate the virulence mechanisms of fungal and
oomycete effectors.

Materials and Methods
Plasmid Construction. The procedures of the plasmid construction for NMR
analysis, lipid-binding assay, and in planta expression are described in detail
in SI Materials and Methods.

NMR Spectroscopy, Structure Determination, and Structural Analysis. The NMR
spectra were recorded at 298 K on a Bruker AVANCE 700 MHz spectrometer
equipped with a triple resonance cryoprobe. Details are given in SI Materials
and Methods.

Protein Expression and Purification. E. coli strain BL21-AI (Invitrogen) was
transformed with the pDEST17 or the pDEST24 vectors encoding Avr3a and
its variants. Cultures were grown to an OD600 of 0.5 before induction of
protein expression was induced by adding 0.2% arabinose and incubation at

28 °C for 3 h. Details of protein purification are provided in SI Materials
and Methods.

Lipid-Binding Assay. Nitrocellulose membranes spotted with lipids were
covered with protein solutions, and the lipid-protein interaction was
detected as described in SI Materials and Methods.

Agroinfiltration Assay. A. tumefaciens GV3101 strains were grown in LB
media supplemented with kanamycin at 50 μg/mL. Agroinfiltration experi-
ments were performed on 3- to 5-wk-old N. benthamiana plants. Details of
each agroinfiltration assay are provided in SI Materials and Methods.

Immunoblot Analyses. Immunoblot analyses were performed as described in
SI Materials and Methods.

Circular Dichroism. The circular dichroism spectra of AVR3a and AVR3aK85E

were recorded at 4 °C on a J-820 Spectropolarimeter (JASCO) as described in
SI Materials and Methods.

Yeast Two-Hybrid Assay. Details of the yeast two-hybrid assay are provided in
SI Materials and Methods.

Note Added in Proof. While this article was being processed for publication,
M. Banfield’s group reported a similar structure of an AVR3a homolog,
AVR3a11 (26).
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SI Materials and Methods
Sample Preparation for NMR Spectroscopy. The 13C,15N-labeled
protein was synthesized by the cell-free protein expression system
(1). The expressed protein was purified by batch purification,
using Ni Sepharose High Performance resin (GE Healthcare).
The eluted protein was cleaved with tobacco etch virus protease
to remove the His-tag and subsequently was exchanged into
20 mMTris·HCl buffer (pH 7.0), containing 300 mMNaCl, 5 mM
imidazole, and 1 mM tris(2-carboxyethyl)phosphine (TCEP),
using a HiPrep 26/10 desalting column (GE Healthcare). The
protein-containing fraction was applied to a HisTrap column, and
its flow-through fraction was pooled. This fraction was exchanged
into 20 mMTris·HCl buffer (pH 7.0) containing 50 mMNaCl and
1 mM TCEP with a HiPrep 26/10 desalting column and was
fractionated using a HiTrapSP cation exchange column (GE
Healthcare) with a linear gradient of 0.05–1 M NaCl in 20 mM
Tris·HCl buffer (pH 7.0) containing 1 mM TCEP. The purified
protein was exchanged into the buffer (20 mM D-Tris·HCl
(pH7.0) containing 100 mM NaCl, 1 mM D-DTT, 0.02% NaN3,
and 10% D2O) with a VIVASPIN ultrafiltration device (Sarto-
rius). The AVR3a4 domain sample consists of 108 amino acid
residues. The first seven amino acid residues at the N terminus
(GSSGSSG) are derived from the linker sequence used in the
expression and purification system (2).

NMR Spectroscopy, Structure Determination, and Structural Analysis.
The NMR spectra were recorded at 298 K on a Bruker AVANCE
700 MHz spectrometer equipped with a triple-resonance cryo-
probe. The NMR sample contained 1.11 mM of uniformly
13C,15N-labeled Phytophthora capsici AVR3a4 in 20 mM D-Tris
(pH 7.0), 300 mM NaCl, 1 mM D-DTT, 0.02% NaN3, and 10%
2H2O/90% 1H2O. Resonance assignments were made using the
standard NMR techniques (3, 4). The NMR spectra acquired for
the resonance assignments were 2D 1H-15N heteronuclear single
quantum coherence (HSQC) and 1H-13C HSQC and 3D HNCA,
HN(CO)CA, HNCO, HN(CA)CO, HNCACB, CBCA(CO)NH,
HBHA(CO)NH, C(CCO)NH, HC(C)H-TOCSY, (H)CCH-
TOCSY, and HC(C)H-COSY. All spectra were processed using
the NMRPipe software package (5). The programs KUJIRA (6)
and NMRView (7, 8) were used for visualization of the NMR
spectra and chemical shift assignments.
For the structure calculation, 15N-edited NOESY and 13C-

edited NOESY with 80-ms mixing times were used to determine
the distance restraints. Dihedral angle restraints were derived
using the program TALOS (9). Automated NOE cross-peak
assignments and structure calculations with torsion angle dy-
namics were performed using the program CYANA (10–13).
One hundred structures were calculated, and the 20 structures
with the lowest target function values in the final calculation
cycle were selected. The stereochemical quality of the structures
was assessed using the program PROCHECK-NMR (14). The
statistics of the structures and the distance and torsion angle
constraints used for the structure calculation are summarized in
Table S1. The coordinates of AVR3a4 have been deposited in
the Protein Data Bank (PDB ID: 2LC2), and the NMR chemical
shifts have been deposited in the Biological Magnetic Resonance
Bank (accession no. 17588).

Molecular Homology Modeling. The 3D structure of the AVR3a
was built by comparative protein structure modeling with the
program MODELLER-9v5 (15–17). The input consisted of the
template structure (i.e., the solution structure of AVR3a4 de-

termined by NMR) and the sequence alignment (shown in Fig.
1A) of each AVR3a4 homolog target with the template AVR3a4.
Applying the default model-building routine model, 10 compara-
tive models of the target sequence were built by MODELER; the
model with the lowest value of the Modeler objective function
was selected as the best model. The stereochemical qualities of
the model were checked by PROCHECK (18).

Plasmid Construction. The construct to express the mature AVR3a
protein for NMR analysis was generated using two-step PCR (19).
For the lipid-binding assay or in planta expression, the 5′ primer
5′-CAC CAT GGA CCA GAC CAA AGT ACT GGT ATA-3′
was used in combination with the 3′ primer 5′-GAG CTC ATA
CCC GGT TAA CCC CAG ATG C-3′ or with the 3′ primer 5′-
TCA ATA CCC GGT TAA CCC CAG ATG C-3′ to amplify the
Avr3a fragments. The resulting fragments were cloned into
pENTR/SD-TOPO or pENTR/D-TOPO vectors (Invitrogen).
pENTR constructs with amino acid substitutions in the positively
charged area were generated using the GeneTailor Site-Directed
Mutagenesis System (Invitrogen). The fragments were cloned
into pDEST17, pDEST24 (Invitrogen), or pGWB12 vectors for
the expression of the N-terminal His-tagged proteins, C-terminal
GST fusion proteins, or N-terminal FLAG-tagged AVR3a in
planta, respectively. The Arabidopsis PIP5K1 gene was cloned
into pEAQ-HT vector (20) with the In-Fusion system (Clontech)
using the 5′ primer 5′-CAT CAC CAT CAT CCC GAA CAC
CTG TAT TTT CAG GGA ATG AGT GAT TCA G-3′ and the
3′ primer 5′-ACC AGA GTT AAA GGC CTC GAG TTA GCC
CTC TTC AAT GAA G-3′. For the construction of AVR3a4
variants, the 5′ primer 5′-CAC CAT GAA TGT GGA CTC
GAA CCA AAA CAA-3′ and the 3′ primer 5′-GAG CTC ATA
ATC CAG GTG GAT CAC AT-3′ were used to amplify the
AVR3a4 fragments. The 3′ primer 5′-GCC AAG TTG AAG
TTG GGA GCT CGT TCC TCC GTG TCG GAC T-3′ and the
5′ primer 5′-AAG AGA CCA GCG AGG AGC GTG GCT TCT
TAG AGA AGG CGG C-3′ or the 3′ primer 5′-GTC CGC CAG
TTT ATC GTT ACC CAT AAT TGC CTT GGC CAT TTT C-3′
and the 5′ primer 5′-GAA AAT GGC CAA GGC AAT TAT
GGG TAA CGA TAA ACT GGC GGA C-3′ were used to make
chimera constructs for AVR3a4 (N22-R58)–AVR3a (A60-Y147)
and AVR3a4 (N22-M74)–AVR3a (G93-Y147), respectively. The
resulting fragment was cloned into pENTR/SD-TOPO vector
(Invitrogen). The fragments were cloned into pDEST24 vector
(Invitrogen) for the expression of C-terminal GST fusion proteins.

Protein Expression and Purification. Escherichia coli strain BL21-AI
(Invitrogen) was transformed with the pDEST17 or the
pDEST24 vector encoding Avr3a and its variants. Cultures were
grown to OD600 of 0.5 before protein expression was induced by
adding 0.2% arabinose and incubation at 28 °C for 3 h. Cells
were pelleted and lysed by sonication in the ice-cold lysis buffer
(20 mM Tris·HCl, 500 mM NaCl, 20 mM imidazole, pH 8.0, for
His-tagged protein or 10 mM Na2HPO4, 1.8 mM KH2PO4, 140
mM NaCl, 2.7 mM KCl, pH 7.3, for GST fusion protein). The
supernatants of the cell lysates were added to a HisTrap HP
column or GSTrap HP column on an ÄKTA Explorer 10S Sys-
tem (GE Healthcare). His-tagged proteins were separated by
linear gradient elution with 20 mM Tris·HCl, 500 mM NaCl, 500
mM imidazole, pH 8.0. GST fusion proteins were separated by
stepwise elution with 50 mM Tris·HCl, 10 mM reduced gluta-
thione, pH8.0. All purification steps were carried out at 4 °C.
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Lipid-Binding Assay. Nitrocellulose membranes spotted with 100
pmol of phospholipids (PIP Strips; Echelon Biosciences) were
blocked in 1% nonfat milk in PBS for 1 h and then incubated with
1 μg/mL GST-fusion proteins overnight at 4 °C. The membranes
were washed with PBS containing 0.1% Tween 20 (PBS-T) and
incubated for 1 h with anti–GST-HRP antibody (GE Health-
care) diluted to 1:2,000. Finally, the membranes were washed
with PBS-T, and GST-fusion proteins bound to phosphatidyli-
nositol monophosphates (PIPs) were detected by ECL Plus
Immuno Blotting Detection Reagents (GE Healthcare). In ad-
dition to using PIP Strips from Echelon Biosciences, serial di-
lutions of PIPs were spotted on to nitrocellulose membranes,
and lipid-binding assays were performed as described above. The
membranes incubated with different proteins were washed for
the same length of time and detected with the same exposure
time in each experiment.

Agroinfiltration Assay. Agrobacterium tumefaciens GV3101 strains
were grown in LB medium supplemented with kanamycin at 50
μg/mL Agroinfiltration experiments were performed on 3- to 5-
wk-old Nicotiana benthamiana plants. Plants were grown and
maintained throughout the experiments in a growth room at 20–
25 °C under continuous fluorescent light. Coexpression of R3a
and Avr3a by agroinfiltration was performed as follows. Strains
carrying the pBINplus-R3a (21) and pGWB12-AVR3a con-
structs were mixed in a 2:1 ratio in induction buffer (10 mM
MES, 10 mM MgCl2, 200 μM acetosyringone, pH 5.6) to a final
OD600 of 0.3. For the INF1-induced cell-death–suppression as-
says, sites infiltrated with strains carrying pGWB12-AVR3a
constructs were challenged with the strain carrying p35S-INF1 at
a final OD600 of 0.3 in induction buffer. For immunoblot anal-
yses, leaves of N. benthamiana were coinfiltrated with A. tume-
faciens carrying pGWB12-AVR3a constructs with or without the
pGWB18-CMPG1 construct, which contains CMPG1 (Solanum
tuberosum StCMPG1b) (22), in combination with pJL3-p19 for
expression of the suppressor of posttranscriptional gene silencing
p19 of the tomato bushy stunt virus (23). In a similar way, strains
carrying the pEAQ-HT-PIP5K1 constructs or pEAQ-HT empty

vector were infiltrated into 3-wk-old N. benthamiana leaves 2 d
before infiltration of the strain carrying pGWB12-AVR3a. Four
days later, the infiltrated sites were harvested for immunoblot
analyses or were challenged further with the strain carrying
p35S-INF1 for the INF1-induced cell-death–suppression assays.

Immunoblot Analyses. Leaf tissues were harvested 5 d post-
infiltration and were ground in liquid nitrogen followed by boiling
for 5 min in SDS-loading buffer supplemented with 50 μM DTT.
The extracted proteins were separated by SDS/PAGE followed
by transfer to nitrocellulose membranes and immunodetection
using anti–myc-HRP antibodies (Santa Cruz) diluted 1:4,000 for
CMPG1; anti-FLAG M2-HRP antibodies (Sigma-Aldrich) di-
luted 1:8,000 for AVR3a; anti-H+-ATPase antibodies (Agrisera)
diluted 1:2,000 as a plasma membrane marker; and anti-UDPase
antibodies (Agrisera) diluted 1:2,000 as a cytoplasm marker. The
detection was performed using SuperSignal West Femto Maxi-
mum Sensitivity Substrate (Thermo Scientific) for CMPG1, ECL
immunoblotting detection reagents (GE Healthcare) for AV-
R3a, and ECL Plus immunoblotting detection reagents (GE
Healthcare) for H+-ATPase and UDPase.

Circular Dichroism. The circular dichroism spectra of AVR3a and
AVR3aK85E were recorded at 4 °C on a J-820 Spectropolarimeter
(Jasco). Data were collected in 1-nm increments (20 nm/min) by
using cuvettetes with a 0.2-cm path length, a 4-s averaging time,
and 1-nm bandwidth. Proteins were dissolved in 20 mM Tris·HCl
(pH 7.0) and 100 mM NaCl, and their solutions were adjusted to
an A280 of 0.3. Protein concentration was determined from
A280 values, and molar absorption coefficients were calculated
from the amino acid sequences.

Yeast Two-Hybrid Assay. The fragments of Avr3a and ΔN-
StCMPG1b were cloned into the EcoRI-PstI cloning site of
pBTM116 and pVP16, respectively, and the yeast two-hybrid
assay was performed as described by Bos et al. (22) and Ulm
et al. (24).
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Fig. S1. Positions of potent amino acid residues of AVR3a. (A) Amino acids whose substitution can confer gain-of-function mutations (magenta) are mapped
on the ribbon diagram of AVR3a. (B) Amino acids whose substitution can cause loss-of-function mutations (orange) are mapped on the ribbon diagram of
AVR3a. (C) Amino acids comprising the W and Y motifs which have been postulated by Dou et al. (1) (dark red and purple) are mapped on the ribbon diagram
of AVR3a (K80, green; I103, cyan; Y147, purple).
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Fig. S2. Protein lipid overlay assay of chimera proteins of AVR3a and AVR3a4. The RXLR domain of AVR3a4 (Asn22–Arg58) was fused with the effector
domain of AVR3a (Ala60–Y147) or the RXLR domain, and the α1 helix of AVR3a4 (Asn22–Met74) was fused with the α2–α4 helices of AVR3a (Gly93–Tyr147).
The lipid overlay assay was performed as in Fig. 2A. PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol;
PI3P, PI-3-phosphate; PI4P, PI-4-phosphate; PI5P, PI-5-phosphate; PI3,4P2, PI-3,4-biphosphate; PI3,5P2, PI-3,5-biphosphate; PI4,5P3, PI-4,5-biphosphate; PI3,4,5P3,
PI-3,4,5-triphosphate; PS, phosphatidylserine; S1P, sphingosine-1-phosphate.

1. Dou D, et al. (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930–1947.
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Fig. S3. Surface charge distribution of AVR3aR81E, AVR3aK85E, AVR3aK86E, and AVR3aK89E. The surface charge distribution of each mutant was calculated with
PyMol (DeLano Scientific). Positively and negatively charged surfaces are shown in blue and red, respectively.

Table S1. Summary of the conformational restraints and statistics
of the final 20 best structures

NOE upper distance limits
Total 1528
Intra residue (ji − jj = 0) 491
Sequential (ji − jj = 1) 335
Medium range (1 < ji − jj < 5) 356
Long range (ji − jj ≥ 5) 346
Torsion angle restraints 90
CYANA target function value 0.0208

Distance restraint violations
Number > 0.1 Å 0
Maximum (Å) —

Torsion angle restraint violations
Number > 5° 0
Maximum (o) —

PROCHECK*
Residues in favored regions 87.4%
Residues in additionally allowed regions 12.2%
Residues in generously allowed regions 0.4%
Residues in disallowed regions 0.0%

RMS deviation to the averaged coordinates
All regions†

Backbone atoms (Å) 0.54
Heavy atoms (Å) 0.94

Ordered regions‡

Backbone atoms (Å) 0.36
Heavy atoms (Å) 0.83

*The region for the PROCHECK calculation includes F60–Y122.
†
“All regions” include F60–Y122.

‡
“Ordered regions” include F60–A75, K79–K90, L94–F100, and D110–D121.
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