
Plant Pathology 602 Plant-Microbe Interactions

Lecture

Fungal and oomycete effectors What types of resistance can R genes mediate?

Sophien Kamoun kamoun.1@osu.edu The Ohio State University Ohio Agricultural Research & Development Center

Plant Pathology 602 Plant-Microbe Interactions

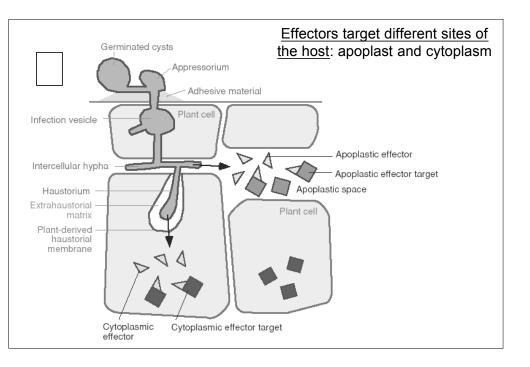
- Fungal/oomycete effectors
- What types of resistance can R genes mediate?

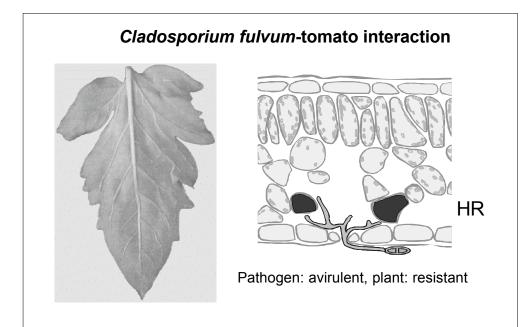
Definitions - Kamoun Annu Rev Phytopath 2006

- Effectors are pathogen molecules that <u>manipulate</u> <u>host cell structure</u> and function thereby facilitating infection and/or triggering defense responses
- Unlike the terms "avirulence", "elicitor", "toxin", and "virulence", the term effector is neutral and does not imply a negative or positive impact on the outcome of the disease interaction
- Many effectors are only known by their avirulence function, it is assumed that these effectors have a virulence function of an unknown nature

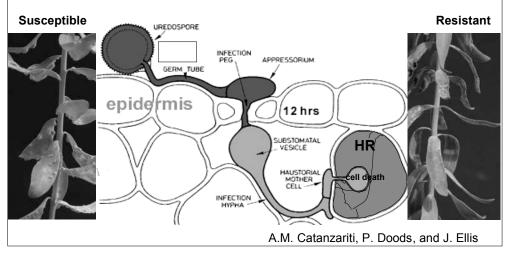
Fungal and oomycete effectors

Features

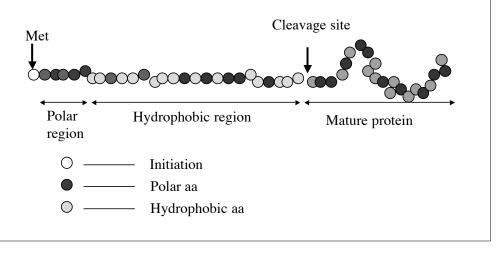

- Effectors from diverse pathogens <u>are not necessarily</u> <u>structurally related but share some features</u>
- Must be accessible to plant cells (expressed during infection, extracellular etc...)
- How do they vary between races of the pathogen? <u>Race evolution?</u>
- For a while, relatively few fungal and oomycetes Avr proteins known but many discovered recently

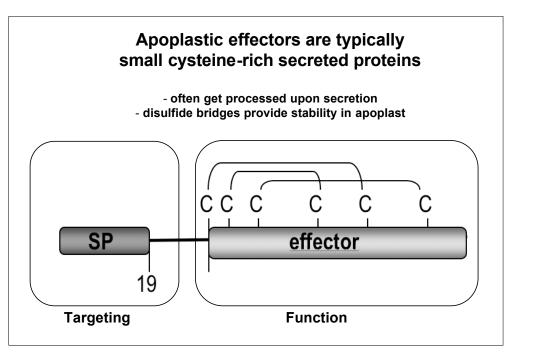

Fungal effectors with Avr function

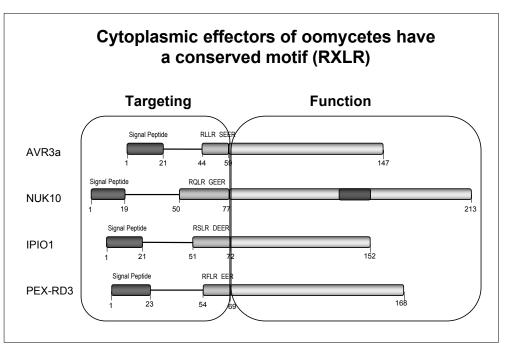
Pathogen	Avr	Host/R gene	description, virulence function
C. fulvum	Avr9	Tomato Cf9	small cysteine rich, unknown
C. fulvum	Avr4	Tomato Cf4	small cysteine rich, chitin binding
C. fulvum	Avr2	Tomato Cf2	small cysteine rich, protease inhibitor
M. grisea	AvrPita	Rice Pi-ta	metalloprotease
M. grisea	ACE1	Rice Pi33	polyketide synthase
Flax rust	AvrL567	Flax L5-L7	unknown
Flax rust	AvrP4	Flax P4	small cysteine rich
Flax rust	AvrP123	Flax P1-3	small cysteine rich, protease inhibitor

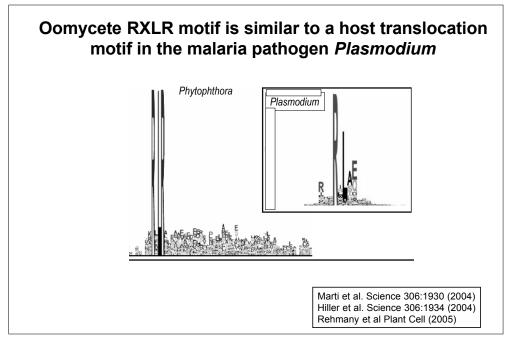

Oomycete effectors with Avr function

Pathogen	Avr	Host/R gene	description
H. parasitica H. parasitica	ATR1 ATR13	Arabidopsis RPP1 Arabidopsis RPP13	RXLR effector RXLR effector
P. sojae	Avr1b-1	Soybean Rps1b	RXLR effector, unknown
P. infestans	Avr3a	Potato Avr3a	RXLR effector, cell death suppressor

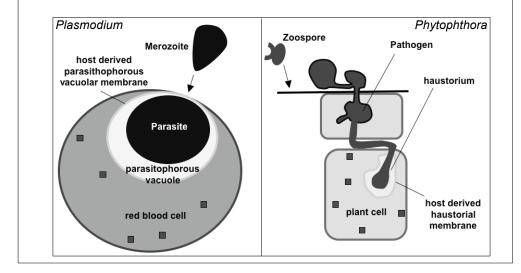



Haustoria: effector delivery into plant cells Avirulence protein recognition by Resistance protein -Flax-rust interaction




Structure of fungal/oomycete effectors

Structure of signal peptides of secreted proteins

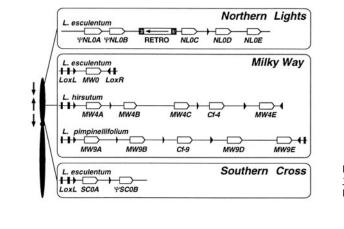


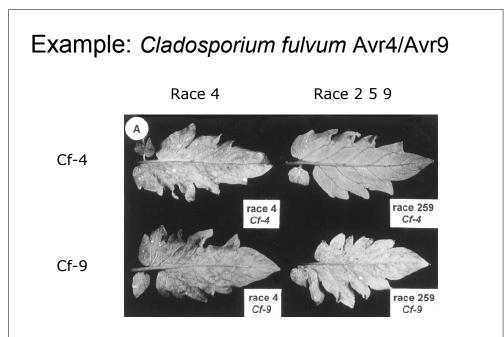
Conserved effector delivery mechanisms between *Plasmodium* and *Phytophthora*?

How to identify effectors?

- Biochemical approach: effector is purified from pathogen and tested for induction activity in a plant bioassay; gene is then isolated by reverse genetics
- Genetic approach: effector is isolated by map based cloning, complementation experiments or reverse genetic; elicitor activity of gene product determined using a gene expression assay (*E. coli*, virus, *Agrobacterium*)
- Genomics approach: candidate effectors are first identified from sequence database and then assayed for activity using various functional assays

Traditionally, effectors have been identified using biochemical or genetic approaches

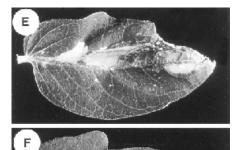

- Biochemical purification of elicitor proteins
- Map-based cloning of pathogen avirulence genes
- Slow and low-throughput
- Not always successful


Example: *Cladosporium fulvum* Avr4 and Avr9

- <u>Elicitor activity identified in intercellular fluid</u> (apoplastic fluid) of infected tomato leaves
- Proteins associated with activity purified
- Corresponding gene(s) cloned
- Various gene expression systems were used to test activity of gene products
- Gene knockout and transformation experiments further supported avirulence function
- Avr4/Avr9 sequences in virulent races examined

The Cf-4/ Cf-9 R gene clusters

Parniske and Jones 1999 PNAS 96:5850


HR inducing activity of *C. fulvum* races on various tomato genotypes

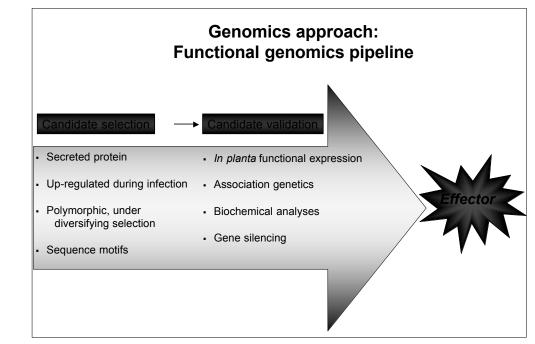
C. fulvum	E11-14(-)	Tomato genotypes			
strains	Elicitor(s) produced	Cf-0	Cf-4	Cf-9	Cf-ECP2ª
Wild-type races					
Race 5	AVR4, AVR9,	b	HR	HR	HR
	ECP2				
Race 4	AVR9, ECP2	_	_	HR	HR
Race 2.4.5.9	ECP2		_	_	HR
Mutant races					
Race $5-\Delta Avr9^c$	AVR4, ECP2	—	HR	_	HR
Race 5- $\Delta Ecp2^d$	AVR4, AVR9	_	HR	HR	

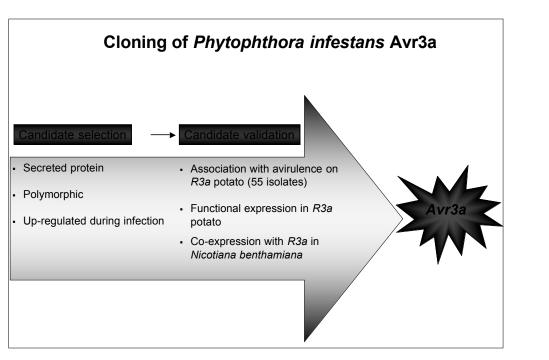
Example: Cladosporium fulvum Avr9

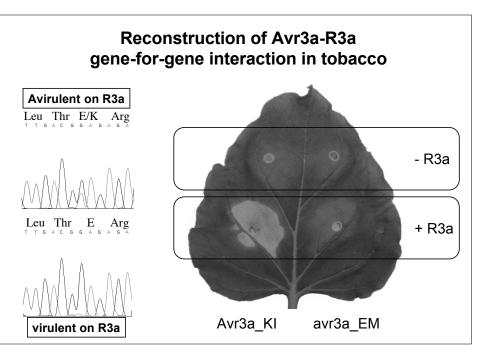
Avr9 peptide injected into Cf-9 leaf

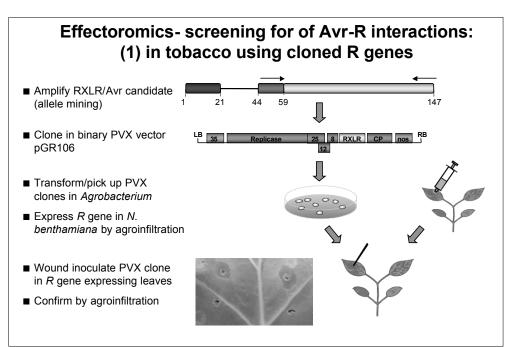
Avr9 peptide injected into Cf-0 leaf

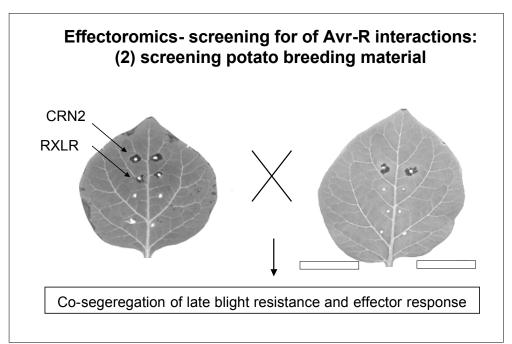
Example: Cladosporium fulvum Avr4/Avr9

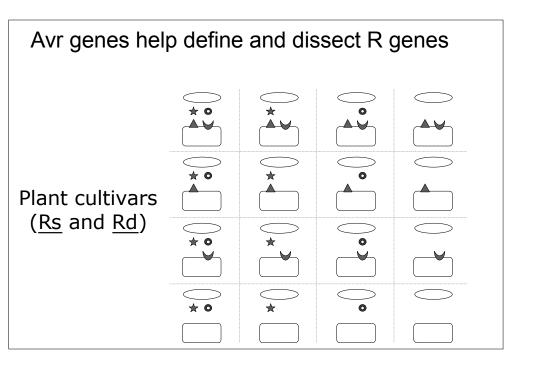

Structure of Avr9 gene

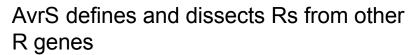

- Single copy gene
- Secreted via signal peptide (type II secretion)
- Active peptide is 28 amino acids; first expressed as a 63 aa protein, secreted as a 40 aa, and then processed by plant/fungal proteases to 28 aa
- <u>Virulent races lack Avr9 gene</u> (no virulent allele! Avr9 deleted)
- Transfer of Avr9 to virulent races is sufficient to make them avirulent on Cf-9 tomato

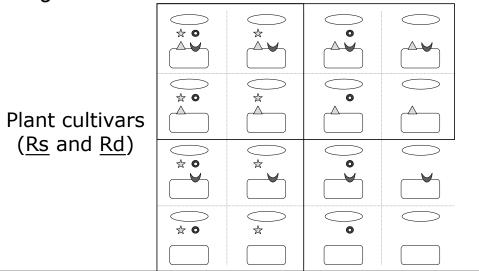

Example: Cladosporium fulvum Avr4/Avr9


Structure of Avr4 gene


- Single copy gene
- Secreted via signal peptide (type II secretion)
- Active peptide is 86 amino acids; first expressed as a 135 aa protein, secreted and then processed by plant/fungal proteases to 86 aa
- Virulent races contain nonfunctional mutated avr4 <u>alleles</u> (mainly single amino acid mutations that make AVR4 unstable in the apoplast, most mutations affect cysteines)
- Transfer of Avr4 to virulent races is sufficient to make them avirulent on Cf-4 tomato







Plant Pathology 602 Plant-Microbe Interactions

- Fungal/oomycete elicitors/Avr proteins
- What types of resistance can R genes mediate?

What types of resistance can R genes mediate?

Traditional negative view

Plant R genes (major genes) only determine:

- Race-specific resistance
- Intraspecific (host) resistance
- Non-durable resistance
- Full resistance
- HR-mediated resistance

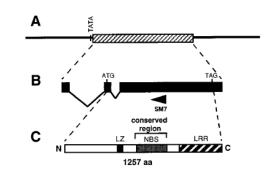
What types of resistance can R genes mediate?

- Traditional negative view results in rejecting introduction of R genes into some crop plants (example: potato)
- Concept of "R gene-free" germplasm is nonsense
- <u>All plants contain R genes</u>

What types of resistance can R genes mediate?

- Traditional negative suggest that R genes cannot mediate complex resistance phenotypes
 - Phenotype of a plant does not provide indication about the nature of the genes it carries
 - One phenotype can be determined by several genes and <u>one gene can determine several phenotypes</u>
 - Effect of a gene depends on the genome context (epistatic effects)

All R genes are not equal!


Modern view stemming from recent knowledge about R gene/Avr gene structure and function

Plant R genes can/may determine:

- Broad spectrum resistance
- Nonhost resistance
- Durable resistance
- Partial resistance

Can R genes determine broad-spectrum resistance?

Migene (Rossi et al. 1998 PNAS 95:9750)

Can R genes determine resistance against all strains of a pathogen?

Migene (Rossi et al. 1998 PNAS 95:9750)

- Functions in tomato
- Typical CC-NBS-LRR
- Confers resistance to root-knot nematode and potato <u>aphid</u>
- Avr/elicitor unknown
- Common signal/perturbation in nematode and insect?
- A single gene can confer multiple phenotypes

Can R genes be involved in nonhost resistance?

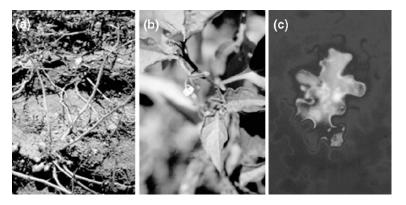
Definition of nonhost resistance:

- Resistance that is <u>determined at the specific or</u> <u>genus level</u>
- In contrast to race- or cultivar specific resistance and partial resistance

Can R genes be involved in nonhost resistance?

Population genetics issue:

- An interaction in which the <u>allelic distributions</u> of the R gene in the plant and the Avr gene in the pathogen <u>are 100%</u> would qualify as a nonhost interaction
- Difficult to study due to the <u>lack of variation</u> and <u>sexual incompatibility</u> between host and nonhost (classical genetics/breeding not possible)


Can R genes be involved in nonhost resistance?

HR is often associated with nonhost resistance:

- Bacteria: HR on nonhosts common; requires hrp (type III secretion) system
- Oomycetes: Phytophthora can penetrate all plants and induce an HR on nonhosts
- Fungi: sometimes but saponins and other preformed barriers appear to be more important

Can R genes be involved in nonhost resistance?

HR is often associated with nonhost resistanceexample: the weed *Solanum nigrum* and *P. infestans*

Can R genes be involved in nonhost resistance?

Nonhost R genes:

- Example: RPW8 broad spectrum Arabidopsis resistance gene against powdery mildew
- Yield durable resistance?
- Likely to include "typical" R genes (NBS-LRR, Cf-like etc...) since HR is involved
- But probably involve other layers of resistance

Can R genes mediate durable resistance?

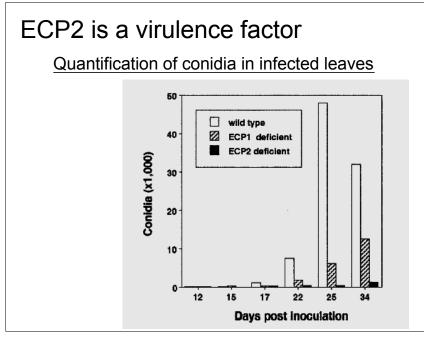
Durable resistance:

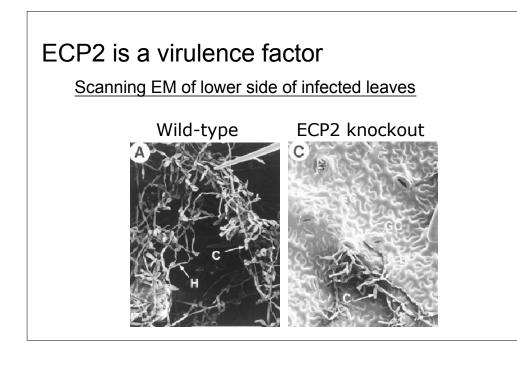
- Resistance that can last in the field over long time periods
- Pathogen is unable to evolve fully virulent races
- Epidemiological concept!!!
- Not necessarily related to mechanism of resistance
- Some R genes are durable

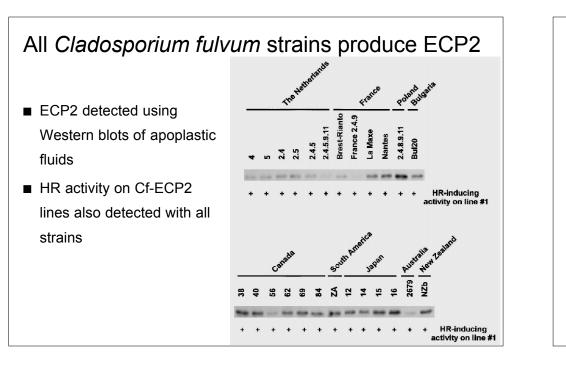
Can R genes mediate durable resistance?

Durable resistance is an epidemiological concept:

- In <u>soybean</u>, single R genes targeted against the soil pathogen <u>Phytophthora sojae</u> tend to last for several years
- In <u>potato</u>, single R genes targeted against the aerial pathogen <u>Phytophthora infestans</u> are quickly overcome by virulent races
- Disease epidemiology and pathogen dispersal are <u>different</u>


Achilles' heel hypothesis-Dual virulence/avirulence function


- If an <u>R gene targets an essential virulence</u> <u>factor</u> of the pathogen then the pathogen is <u>less likely</u> to mutate the <u>dual Avr/vir gene</u> to evolve a new virulent race
- Objective is to identify dual Avr/vir factors in pathogens


Cladosporium fulvum ECP2

ECP2 is a virulence factor (Lauge et al. 1997 MPMI 10:725)

- ECP2 is abundantly secreted by *C. fulvum* in intercellular space of susceptible tomato leaves
- ECP2 knockout mutants of *C. fulvum* show poor colonization and conidation
- ECP2 also function as an avirulence factor since it is recognized by a tomato gene Cf-ECP2

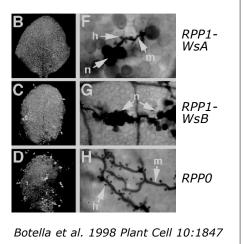
Cladosporium fulvum ECP2

Summary:

- ECP2 is both a virulence and an avirulence factor
- On most tomato lines, ECP2 functions as a virulence <u>factor</u>
- On Cf-ECP2 lines, ECP2 confers avirulence
- Cf-ECP2 recognizes an essential target of *C. fulvum* (Achilles' heel)
- <u>Does Cf-ECP2 confer durable resistance?</u>
- Cf-ECP2 cloned: typical Cf gene

Can R genes mediate partial resistance?

- Partial resistance: does not provide full resistance to pathogen
- May be more durable than full resistance (well documented in some cases such as potato late blight caused by *P. infestans*)
- Partial resistance may not impose sufficient selective pressure to allow novel virulent races to dominate pathogen populations (James and Fry 1983 Phytopath. 73:984)
- If true, then partial resistance should prove durable independently of the mechanism of resistance


Can R genes mediate partial resistance?

Partial resistance mediated by R genes:

- Traditionally known in many <u>heterozygote plants</u> containing one copy of the R gene (co-dominance)
- Several examples with cloned R genes
- HR can be associated with partial resistance (trailing HR or pathogen escape from HR lesions)

Arabidopsis RPP1-WsB confers partial resistance to the oomycete Peronospora parasitica

- P. parasitica can sporulate on RPP1-WsB plants
- This phenotype is associated with <u>a trailing hypersensitive</u> response
- A similar phenotype was noted on potato cultivars with partial resistance to Phytophthora infestans

Can R genes mediate partial resistance?

Cf-9 cluster of genes (Parniske et al. 1997 Cell 91:821)

- At least 3 active C. fulvum R genes are present in introgressed Cf-9 segment
- One of these genes is Cf-9 (full resistance to Avr9 containing strains); two other genes (Hcr9s) confer partial resistance
- Corresponding Avr genes are being cloned
- Avr9 mutant races are rare and are not fully pathogenic: Cf-9 tomato shows useful resistance

Residual effect of Cf-9 cluster is explained by additional R genes Lauge et al. 1998 MPMI 11:301

C. fulvum strains	MM-Cf0 ^a	MM-Cf9 ^b	MM-Cf9/ <i>Cf-9</i> mutant ⁴	
Avr9 ⁺ wild types				
Race 4	S ^d	Re	WR ^f	
Race 5	S	R	WR	
Avr9 mutants (transgenic)				
A43\Delta Avr9	S	WR	WR	
B51ΔAvr9	S	WR	WR	
Avr9 mutants (natural)				
NZb	S	WR	ND ^g	
2679	S	S	ND	

^a Genotype lacking the *Cf-9* introgression segment.

^b Genotype containing the Cf-9 introgression segment.

^c Genotype containing the *Cf-9* introgression segment, without a functional *Cf-9* resistance gene.

^d Susceptible.

- e Highly resistant.
- f Weakly resistant.
- g Not determined.

Summary

- Various types of resistance mechanisms in plants
- Some involve specific recognition of effectors by R genes, others are more general
- Both types of mechanisms can result in a diversity of phenotypic expression of resistance
- R genes may function in different types of resistance
- There is a revival in the use of R genes in biotechnology