INTRODUCTION

Resistance of plants to pathogens can be attributed to the action of various resistance mechanisms, each functioning at a certain level and specificity. One such mechanism is systemic acquired resistance (SAR), which generally follows a localized unsuccessful pathogen attack, involves an enhanced state of resistance to a broad spectrum of pathogens and is associated with an increased expression of genes encoding pathogenesis-related (PR) proteins [30]. In other cases, pathogen attack is hampered by another type of resistance, called induced systemic resistance (ISR), which is not associated with increased PR gene expression [28].

SAR has been described in several plant species, including potato, but has best been documented in Arabidopsis thaliana. Several Arabidopsis mutants altered in SAR have been identified. For example, mutants in the npr1 gene (non-expressor of PR genes) fail to respond to SAR-inducing treatments, and are susceptible to the bacterial pathogen Pseudomonas syringae in contrast to wild-type plants [7, 13, 31]. Overexpression of npr1 led to enhanced resistance to P. syringae and the oomycete Peronospora parasitica in a dosage-dependent fashion since levels of npr1 mRNA, NPR1 protein, PR-1 mRNA and resistance were positively correlated in the transformants [8]. The cpr (constitutive expressers of PR genes) [6] and dnd1 (defense with no cell death) mutants [47] exhibit constitutive SAR-related phenotypes including elevated mRNA levels for genes encoding PR proteins.
analyses of these Arabidopsis mutants indicate that subtle mutations may affect basal SAR levels, and that higher resistance levels can be reached by manipulating basal levels of SAR.

In solanaceous plants, SAR has also been reported. In potato, SAR could be induced by treatment with hyphal wall components, unsaturated fatty acids and jasmonic acid, resulting in enhanced resistance to the late blight oomycete pathogen Phytophthora infestans (Mont.) de Bary [14, 9, 10]. In engineered potato plants containing a transgene encoding a bacterio-opsin proton pump from Halobacterium halobium, the expression of several PR genes was increased and resistance to P. infestans was enhanced [2]. Naturally occurring constitutive SAR was found in hybrids of tobacco and in certain tomato lines in which enhanced resistance to various pathogens was associated with constitutive PR gene expression [3, 46, 19].

In addition to realization of full-fledged SAR, the effects of overexpression of single PR genes on resistance have been described. Overexpression of PR-1 in tobacco-increased resistance to Phytophthora parasitica and Peronospora tabacina [4], and overexpression of PR-5 (osmotin) slightly enhanced resistance to P. infestans in potato [21, 27, R. Li and A. Pereira, pers. comm.] and Solanum commersonii [49]. PR-1-like proteins are conserved within the plant, fungal, vertebrate and invertebrate kingdoms. In animals these proteins function as venoms, allergens, or are implicated otherwise in defense [41]. The purified PR-1 protein from tomato and tobacco inhibited germination of P. infestans zoospores in vitro and lesion growth in vivo [25]. PR-2 and PR-3 encode glucanases and chitinases respectively, and these enzymes may play a role in cell wall degradation. However, oomycetes lack chitin in their cell wall and are not expected to be affected by chitinases. Actin-binding studies suggested that a basic chitinase and an osmotin-like protein might be involved in cytoplasmic aggregation, an important event in potato’s cellular defense to P. infestans [36]. In addition, PR-5 proteins play a role in osmotic stress, freezing tolerance, permeabilization of fungal and oomycetal plasma membranes and pathogen resistance [43, 21, 1, 49].

P. infestans is a major pathogen of potato and tomato. In recent years, the severity of this disease has increased dramatically, and a more profound insight in the mechanisms of resistance to P. infestans is needed to develop novel control strategies. In the P. infestans–potato interaction, the most commonly studied type of resistance is race-specific resistance, which is governed by single dominant resistant genes (R genes). Unfortunately, race-specific resistance is only effective against certain strains of the pathogen, and is easily overcome by rapid evolution of the pathogen resulting in a lack of durability in the field. In contrast, race-non-specific resistance is effective against all known strains or races of the pathogen. It is thought to be based on multiple genes, may be durable, and is generally of a partial nature. Several wild Solanum species possess varying levels of partial resistance to P. infestans [11, 44], and in old potato cultivars, such as cv. Robijn, partial resistance appeared to be durable [12]. In a previous study, we cytologically analysed Solanum species inoculated with P. infestans, and found that defense responses were always associated with the hypersensitive response (HR), a programmed cell death defense response of plants. In partially resistant clones, hyphal escape occurred and growing lesions were established [18, 43]. The growth rate of these lesions varied between different Solanum clones, indicating that defense mechanisms other than the HR operate at different levels in the different clones.

Even though a causal link between the accumulation of PR proteins and SAR has not always been established, a correlation between the timing of PR gene expression and the onset and duration of SAR is evident from many studies [30]. Therefore, measuring expression levels of PR genes is an appropriate method for determining levels of SAR [30, 22]. In this study, we determined the variation in basal mRNA levels of SAR marker genes (PR-1, PR-2 and PR-5) in Solanum plants, and tested whether resistance to P. infestans in Solanum species is associated with high basal levels of SAR.

MATERIALS AND METHODS

Plant material

The plant material used in this study is listed in Table 2. The origin of the plant material and the in vitro propagation was described previously [44]. Plants were grown under controlled conditions in climate chambers with a 16 h/8 h day/night regime at 18/15°C and HPIT (Philips) illumination. The condition of different batches of plants used for the various resistance tests and for the PR gene expression analyses was comparable [44].

Phytophthora infestans

Phytophthora infestans isolates of different origins were used (Table 1). The propagation of the isolates and the preparation of inoculum was performed following standard procedures [44].

Resistance assessment

The resistance levels of 18 Solanum clones to six P. infestans isolates were determined using a routine resistance assay [44]. Detached leaves were spot-inoculated (10 µl) with a zoospore suspension of 50 000 spores ml^{-1}, and incubated at high humidity in the dark. On the fourth, fifth and sixth day after inoculation, the largest length and width
The ellipse area \(A \) was calculated, and the lesions were divided into two groups, i.e. “no growing lesion” \(A \leq 16 \text{ mm}^2 \), or “growing lesion” \(A > 16 \text{ mm}^2 \). The infection efficiencies (IE) were calculated as the percentage of growing lesions. The areas of the “growing lesion” group were square root transformed, and the average lesion growth rate (LGR) was estimated by linear regression on time. The mean LGRs were analysed with REML using Genstat.

Southern and Northern blot analysis

DNA was isolated from leaves of Solanum plants and digested with EcoRV [33]. The DNA was electrophorized, transferred to Hybond-N\(^+\), and the Southern blot was hybridized with various probes. For expression analyses, leaf material (3rd, 4th and 5th fully developed leaf) from healthy, uninoculated plants was harvested and immediately frozen in liquid nitrogen. Two independent RNA isolation [42] series were carried out. For each RNA sample 15 \(\mu \text{g} \) was loaded, electrophorized and transferred to Hybond-N\(^+\). The Northern blot was hybridized concurrently with the Southern blot with probes representing the PR-1, PR-2, PR-5 and tubulin gene at 65, 60, 60 and 65\(^\circ\)C respectively, and the blots were washed at 1, 0.5, 0.5 and 1 \(\times \) SSC stringency, respectively.

Messenger RNA levels were determined from the Northern blots using a Fujix Bio-Imaging Analyser (BAS 2000). The signals were quantified in photo-stimulated luminescence (PSL) per mm\(^2\). To correct for slight differences in loading the signals for PR gene expression were normalized to the constitutively expressed tubulin signal.

RESULTS AND DISCUSSION

Specific and non-specific resistance in Solanum

To test the correlation between high levels of SAR and resistance to \(P. infestans \), we first carefully determined the resistance levels of a set of 18 Solanum plants to five isolates from different clonal lineages, races, geographical origins, hosts of origin, years of isolation and mating types (Table 1). Various types of resistance were noted as illustrated by the mean LGRs and IEs data (Table 2). Statistical analyses revealed a highly significant interaction \(P < 0.001 \) between Solanum clones and \(P. infestans \) isolates, indicating that race-specific resistance occurs. In potato cv. Ehud \((R1) \), race-specific resistance was evident since inoculation with race 0 strain IPO-0 resulted in complete resistance (IE = 0, LGR = 0), whereas inoculation with isolate 90128 (virulent on \(R1 \) plants), resulted in high IEs and LGRs (Table 2). In Estima and Première \((R10) \), the race-specific response was less pronounced, as a considerable percentage of growing lesions was noted in the interaction with IPO-0. This is in line with previous findings that \(R1 \) functions as a “strong” \(R \) gene and \(R10 \) as a “weak” \(R \) gene [39, 43]. Statistical analyses of LGR

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Clonal lineage</th>
<th>Race</th>
<th>Origin</th>
<th>Host of origin</th>
<th>Year</th>
<th>Mating type</th>
<th>Provided by</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPO-0</td>
<td>US-1</td>
<td>0</td>
<td>Unknown</td>
<td>Unknown</td>
<td>1987</td>
<td>A1</td>
<td>Lo Turkensteen, Plant Research Int., Wageningen, The Netherlands</td>
</tr>
<tr>
<td>90128</td>
<td>Unknown</td>
<td>1.3.4.6.7.8.10.11</td>
<td>Geldrop, The Netherlands</td>
<td>Potato</td>
<td>1990</td>
<td>A2</td>
<td>Francine Govers, Wageningen University, Wageningen, The Netherlands</td>
</tr>
<tr>
<td>Mex580</td>
<td>Unknown</td>
<td>Complex</td>
<td>Toluca Valley, Mexico</td>
<td>S. demissum</td>
<td>Unknown</td>
<td>A1</td>
<td>Bill Fry, Cornell University, Ithaca, U.S.A.</td>
</tr>
</tbody>
</table>

Table 1. Phytophthora infestans isolates used in this study

DNA probes

PR gene members previously described to be correlated to resistance were selected. As DNA templates for probe synthesis the following fragments were used: a 400 bp EcoRI/KpnI fragment of \(\text{StPR1-1} \), a \(\text{PR-1} \) cDNA clone from potato [39], a 1300 bp EcoRI/XhoI fragment of an acidic glucanase cDNA clone from tomato [40], a PCR fragment amplified on tobacco genomic DNA for \(\text{PR-5} \) [23], and a 1800 bp EcoRI/XhoI fragment from cDNA clone pFB19 encoding tubulin from potato.
and IE between Solanum clones and P. infestans isolates also revealed a highly significant interaction \((P < 0.001)\) when cultivars bearing \(R1\) and \(R10\) were excluded, suggesting that novel undefined \(R\) genes may occur in the examined set of Solanum plants. However, strong isolate-specific resistance \([43]\) comparable to \(R1\) was not evident. In contrast, weaker isolate-specific responses were common. For example, \(S. microdontum-167\) was more susceptible to isolate 90128 than to the other isolates. \(S. sucrense-23\) was more often infected by IPO-0 and Mex580 \((IE = 88 \text{ and } 85 \% \text{ respectively})\) than by other isolates \((IE = 15–45 \%)\), although high LGRs were noted in all interactions. Potato cv. Estima and Première exhibited similar IE and LGRs to isolates IPO-0, 90128, Mex580 and BIN-16, but Estima was remarkably resistant to isolate ME93-2A.

Low LGR values are considered as indicators of nonspecific, partial resistance \([12]\). In addition to isolate-specific responses, Solanum clones differed in LGRs independently of the isolate tested. For example, potato cv. Robijn showed lower LGR values than Bintje with all tested isolates. Cultivar Estima and Première, and to a lesser extent cv. Ehud, showed intermediate LGRs, indicating a certain level of partial resistance for these cultivars. In \(S. microdontum\), clone 167 and 178 displayed lower LGRs than clone 265, and in \(S. arnezii \times hondelmannii\), clone 63 generally displayed slightly lower LGRs than clone 72, independently of the isolate. This suggests that most of the examined Solanum plants display significant and variable levels of race/isolate-non-specific, partial resistance to five \(P. infestans\) isolates of diverse origin.

Occurrence of PR genes in Solanum

To check whether sufficient cross-hybridization occurs between the PR gene probes and the selected plants, a Southern blot containing genomic DNA from the different Solanum species was hybridized with probes from a potato \(PR-1\) gene, a tomato \(PR-2\) gene, and a tobacco \(PR-5\) gene. As shown in Fig. 1, the three probes cross-hybridized with DNA from all Solanum clones. In all cases multiple hybridizing bands were detected revealing the presence of multi-gene families for \(PR-1\), \(PR-2\) and \(PR-5\) in Solanum species. In addition, there was variation in signal intensity among the hybridizing bands, suggesting sequence diversity or differences in copy number among the family members. Multi-gene families have been reported for \(PR-2\) in \(S. tuberosum\) \([3]\), for \(PR-5\) in \(S. commersonii\) \([48]\), and for \(PR-1\), \(PR-2\) and \(PR-5\) in tobacco \([41]\).

For each of the three PR genes, the hybridization pattern within the species was reasonably conserved. Between species however, hybridization patterns were quite diverse. For \(PR-2\), a certain specificity can be noted, as the hybridization patterns of the closely related species...
S. berthaultii and S. arnezii × hondelmannii [33] were quite similar. In addition, the hybridization of the tomato PR-2 probe to S. nigrum DNA was exceptionally weak, whereas hybridization of the same blot with the PR-1 and PR-5 probes resulted in stronger signal intensities. This suggests that the PR-2 genes from S. nigrum are quite divergent from those of the other tested Solanum species. This is not surprising since S. nigrum is the most distantly related species in the examined set. S. nigrum is classified in the subgenus Solanum, whereas the other tested Solanum species and tomato belong to the subgenus Potatoe [34].

In summary, the Southern blot hybridizations showed that the heterologous PR probes are suitable for analysing expression of PR-1, PR-2 and PR-5 genes in the Solanum plants.

Expression analysis of Solanum PR genes

To monitor constitutive SAR in the Solanum plants, the basal expression levels of the PR-1, PR-2 and PR-5 genes were determined in two independent experiments using uninoculated plants cultivated under defined conditions in growth chambers. The results of the first experiment are shown in Fig. 2. The autoradiographs showed that PR-1, PR-2 and PR-5 mRNAs were present at detectable levels in the majority of the tested plants. Interestingly, there is variation in PR mRNA levels between the different clones. In addition, within the entire Solanum set, the patterns of mRNA levels of the three PR genes were not identical. This is in line with the separation of PR-1, PR-2 and PR-5 gene activation pathways previously shown for Arabidopsis enhanced disease susceptibility mutants eds5 [29]. The absence of coordinated regulation between the different PR genes was also observed in salicylic acid induction deficient mutants sid1 and sid2, in which the pathway leading to PR-1 expression was blocked, whereas PR-2 and PR-5 were expressed at wild-type levels [24]. Thus unequal mRNA accumulation of the different PR genes could reflect different pathways of regulations for individual members of the three PR gene families, perhaps reflecting the wide range of physiological responses in which these proteins are involved [37, 26, 48].

PR mRNA levels were quite similar in the two experiments. However, in potato cv. Ehud and S. vernei-530, the mRNA levels observed for all three PR genes were higher in the second experiment compared to the first experiment. We assume that despite the precautions we took the Ehud and S. vernei plants in the second experiment may have been in a stressed state. In other experiments we noted high PR-1 mRNA levels in plants...
grown in the greenhouse (data not shown), where they were exposed to heat and drought stress.

Does PR gene expression correlate with resistance?

To test whether isolate-non-specific, partial late blight resistance in *Solanum* is associated with a constitutive SAR, the obtained LGRs were compared to basal mRNA levels of PR genes. PR-1, PR-2 and PR-5 mRNA levels were quantified and normalized using tubulin mRNA levels as a reference. At the genus level, there was no indication for a correlation between non-specific resistance and PR expression levels. This may be explained by the different genetic background of the different plant species and the noted complexity of the three PR gene families. In contrast, significant correlation was observed at the species level. In *S. aranezii × hondelmannii*, *S. microdontum*, *S. sucrense* and *S. tuberosum*, partially resistant clones exhibited higher levels of PR mRNA than more susceptible ones. In *S. sucrense* and *S. aranezii × hondelmannii*, this correlation was evident for all three PR genes in the two independent experiments. In *S. circasiefolium*, *S. vernei*, ABPT and *S. nigrum*, only one clone was used, and thus correlations at the species level could not be tested. No correlation was observed between PR mRNA levels and resistance in *S. berthaultii*. However, the full resistance observed in clone 9 is HR-mediated [43] and suspected to operate through a novel *R* gene as recently observed for another accession of *S. berthaultii* [15].

Within *S. tuberosum*, the relationship between non-specific resistance and PR mRNA levels was examined for the five tested cultivars (Fig. 3). Highly resistant cv. Robijn accumulated the highest levels of PR-1, PR-2 and PR-5 mRNA, whereas partially resistant Ehud, Estima and Première displayed intermediate levels, and susceptible Bintje very low levels. These results suggest a correlation between PR gene expression levels and resistance levels in potato. These results are consistent with those obtained with *S. aranezii × hondelmannii*, *S. microdontum*, and *S. sucrense* suggesting that an enhanced constitutive expression of SAR may be a component of the partial/non-specific resistance noted in *Solanum* species.

Concluding remarks

Basal SAR may function as an independent resistance mechanism, but more likely contributes to the complex network of defense reactions that take place following pathogen attack [17, 29]. Resistance in the *Solanum–P. infestans* interaction often exhibits a quantitative nature, which can be explained by the extent of an ambiguous HR. Per infection event, a fine balance between invading hyphae and plant cells exhibiting an HR, determines whether infection will be aborted [43]. Basal level of SAR may increase the sensitivity of plant cells to HR elicitation [32], or may slow pathogen invasion by creating physiological conditions that limit pathogen growth.

The identification of molecular markers linked to partial resistance to *P. infestans* in *Solanum* species, is of great value for potato late blight resistance breeding. High levels of PR mRNAs could serve as useful molecular markers for screening breeding populations and germplasm. Assays based on quantitative reverse transcriptase (RT-PCR) of PR genes could be developed to assist potato breeders and geneticists in identifying promising genotypes and could supplement other assays based on quantitative trait loci (QTL) [29]. Using marker genes for known resistance mechanisms such as SAR may provide a novel prospective for marker-assisted breeding.

We would like to thank Jan van Kan (Laboratory of Phytopathology, Wageningen University) for providing the PR-2 probe, Andy Pereira (Plant Research International, Wageningen) for providing the PR-5 probe, Paul Keizer (Plant Research International, Wageningen) for help with the statistical analyses, and Pierre de Wit (Laboratory of Phytopathology, Wageningen University) for critically reading of the manuscript. This work was...
financed by Stichting Stimuleren Aardappelonderzoek, Zeist, The Netherlands.

REFERENCES

